【題目】已知,在平面直角從標(biāo)系中,A點(diǎn)坐標(biāo)為(0,4),B點(diǎn)坐標(biāo)為(2,0),C(m,6)為反比例函數(shù) 圖象上一點(diǎn).將△AOB繞B點(diǎn)旋轉(zhuǎn)至△A′O′B處.

(1)求m的值;
(2)若O′落在OC上,連接AA′交OC與D點(diǎn).①求證:四邊形ACA′O′為平行四邊形; ②求CD的長(zhǎng)度;
(3)直接寫(xiě)出當(dāng)AO′最短和最長(zhǎng)時(shí)A′點(diǎn)的坐標(biāo).

【答案】
(1)

解:∵C(m,6)為反比例函數(shù) 圖象上一點(diǎn),

∴m= = ;


(2)

如圖1.

∵點(diǎn)C的坐標(biāo)為( ,6),∴CH= ,OH=6,∴tan∠COH= ,AC=

∴∠COH=30°,OA=AC,

∴∠BOO′=60°,∠ACO=∠AOC=30°.

∵BO′=BO,

∴∠BO′O=∠BOO′=60°.

∵∠A′O′B=∠AOB=90°,

∴∠CO′A′=30°,

∴∠ACO=∠CO′A′,

∴AC∥O′A′.

又∵O′A′=OA=AC,

∴四邊形ACA′O′為平行四邊形;

②∵BO′=BO,∠BOO′=60°,

∴△BOB′是等邊三角形,

∴OO′=OB=2.

∵∠CHO=90°,CH= ,OH=6,∴OC= ,∴CO′=OC﹣OO′= ﹣2.

∵四邊形ACA′O′為平行四邊形,

∴CD=O′D= CO′= ﹣1;


(3)

解:當(dāng)AO′最短時(shí)A′點(diǎn)的坐標(biāo)(2+ , ),當(dāng)AO′最長(zhǎng)時(shí)A′點(diǎn)的坐標(biāo)(2﹣ ,﹣ ).

提示:①當(dāng)點(diǎn)O′在線(xiàn)段AB上時(shí),AO′最短,

過(guò)點(diǎn)O′作O′N(xiāo)⊥x軸于N,過(guò)點(diǎn)A′作A′M⊥O′N(xiāo)于M,如圖2.

∵O′N(xiāo)∥OA,

∴△BNO′∽△BOA,

,

∴BN= ,O′N(xiāo)=

∵∠A′MO′=∠A′O′B=∠O′N(xiāo)B=90°,

∴∠MA′O′=∠NO′B,

∴△A′MO′∽△O′N(xiāo)B,

,

∴A′M= ,O′M= ,

∴A′(2﹣ + , + )即(2+ );

②當(dāng)點(diǎn)O′在線(xiàn)段AB延長(zhǎng)線(xiàn)上時(shí),AO′最長(zhǎng),

過(guò)點(diǎn)O′作O′N(xiāo)⊥x軸于N,過(guò)點(diǎn)A′作A′M⊥O′N(xiāo)于M,如圖3.’

同理可得:A′(2﹣ ,﹣


【解析】(1)只需把點(diǎn)C的坐標(biāo)代入反比例函數(shù)的解析式,就可解決問(wèn)題;(2)①過(guò)點(diǎn)C作CH⊥y軸與H,如圖1,易證AC=OA=O′A′,要證四邊形ACA′O′為平行四邊形,只需證AC∥O′A′,只需證∠ACO=∠A′O′C即可;②由平行四邊形ACA′O′可得CD= CO′,要求CD,只需求CO′,只需求出OC及OO′即可;(3)根據(jù)兩點(diǎn)之間線(xiàn)段最短可知:當(dāng)點(diǎn)O′在線(xiàn)段AB上時(shí)AO′最短(如圖2),當(dāng)點(diǎn)O′在線(xiàn)段AB的延長(zhǎng)線(xiàn)上時(shí)AO′最長(zhǎng)(如圖3);過(guò)點(diǎn)O′作O′N(xiāo)⊥x軸于N,過(guò)點(diǎn)A′作A′M⊥O′N(xiāo)于M,易證△BNO′∽△BOA,△A′MO′∽△O′N(xiāo)B,然后只需運(yùn)用相似三角形的性質(zhì)即可解決問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:| - |+( -1)0+2sin45°﹣2cos30°+( 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一布袋中有紅、黃、白三種顏色的球各一個(gè),它們除顏色外,其它都一樣,小亮從布袋摸出一個(gè)球后放回去搖勻,再摸出一個(gè)球.
(1)請(qǐng)你用列舉法(列表法或樹(shù)形圖)分析并求出小亮兩次都能摸到白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】房山某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“最喜歡哪種學(xué)習(xí)方式”隨機(jī)調(diào)查了他們周?chē)囊恍┩瑢W(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下的兩個(gè)統(tǒng)計(jì)圖.請(qǐng)根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下問(wèn)題:
(1)這次抽樣調(diào)查中,共調(diào)查了  名學(xué)生;
(2)補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校1000名學(xué)生中大約有多少人選擇“小組合作學(xué)習(xí)”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是△ABC的角平分線(xiàn),點(diǎn)E,F(xiàn)分別在BC、AB上,且DE∥AB,EF∥AC.

(1)求證:BE=AF;
(2)若∠ABC=60°,BD=6,求四邊形ADEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=4,點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對(duì)角線(xiàn)AC上,若四邊形EGFH是菱形,則AE的長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,E、F分別是了AB、AD上的一點(diǎn),且BF⊥CE,垂足為G,求證:AF=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時(shí),連接B1B,取BB1的中點(diǎn)D,連接A1D,則A1D的長(zhǎng)度是(
A.
B.2
C.3
D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案