(2005•金華)如圖,矩形ABCD中,E、F分別是AB、CD的中點,點O1,O2在線段EF上,⊙O1與矩形ABCD的邊DA,AB,BC都相切,⊙O2與⊙O1外切,與DC邊相切于點F.如果⊙O1,⊙O2的半徑分別是4cm,2cm,那么矩形ABCD的面積為( )

A.20cm2
B.24cm2
C.40cm2
D.96cm2
【答案】分析:要求矩形的面積,就要先求出長和寬,然后利用面積公式計算面積.
解答:解:從圖中可以看出,矩形的長是兩圓直徑和,即8+4=12,
寬是大圓直徑,即8,
所以面積=96.
故選D.
點評:本題主要利用內(nèi)切圓的性質(zhì)求出矩形的長和寬,然后利用面積公式計算面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•金華)如圖,拋物線y=ax2+bx+c經(jīng)過點O(0,0),A(4,0),B(5,5).點C是y軸負(fù)半軸上一點,直線l經(jīng)過B,C兩點,且tan∠OCB=
(1)求拋物線的解析式;
(2)求直線l的解析式;
(3)過O,B兩點作直線,如果P是直線OB上的一個動點,過點P作直線PQ平行于y軸,交拋物線于點Q.問:是否存在點P,使得以P,Q,B為頂點的三角形與△OBC相似?如果存在,請求出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年浙江省金華市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•金華)如圖,拋物線y=ax2+bx+c經(jīng)過點O(0,0),A(4,0),B(5,5).點C是y軸負(fù)半軸上一點,直線l經(jīng)過B,C兩點,且tan∠OCB=
(1)求拋物線的解析式;
(2)求直線l的解析式;
(3)過O,B兩點作直線,如果P是直線OB上的一個動點,過點P作直線PQ平行于y軸,交拋物線于點Q.問:是否存在點P,使得以P,Q,B為頂點的三角形與△OBC相似?如果存在,請求出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《相交線與平行線》(01)(解析版) 題型:填空題

(2005•金華)如圖,直線a、b被直線l所截,a∥b,如果∠1=50°,那么∠2=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圓》(14)(解析版) 題型:解答題

(2005•金華)如圖,在矩形ABCD中,AD=8,點E是AB邊上的一點,AE=2.過D,E兩點作直線PQ,與BC邊所在的直線MN相交于點F.
(1)求tan∠ADE的值;
(2)點G是線段AD上的一個動點,GH⊥DE,垂足為H.設(shè)DG為x,四邊形AEHG的面積為y,試寫出y與x之間的函數(shù)關(guān)系式;
(3)如果AE=2EB,點O是直線MN上的一個動點,以O(shè)為圓心作圓,使⊙O與直線PQ相切,同時又與矩形ABCD的某一邊相切.問滿足條件的⊙O有幾個?并求出其中一個圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圓》(13)(解析版) 題型:解答題

(2005•金華)如圖,在直角坐標(biāo)系中,點M在y軸的正半軸上,⊙M與x軸交于A,B兩點,AD是⊙M的直徑,過點D作⊙M的切線,交x軸于點C.已知點A的坐標(biāo)為(-3,0),點C的坐標(biāo)為(5,0).
(1)求點B的坐標(biāo)和CD的長;
(2)過點D作DE∥BA,交⊙M于點E,連接AE,求AE的長.

查看答案和解析>>

同步練習(xí)冊答案