△ABC中,AB=AC=2,∠BAC=90°,O是BC的中點(diǎn),小敏拿著含45°角的透明三角板,使45°角的頂點(diǎn)落在點(diǎn)O,三角板繞O點(diǎn)旋轉(zhuǎn).
(1)如圖(a),當(dāng)三角板的兩邊分別交AB、AC于點(diǎn)E、F時(shí),求證:△BOE∽△CFO;
(2)操作:將三角板繞點(diǎn)O旋轉(zhuǎn)到圖(b)情形時(shí),三角板的兩邊分別交BA的延長(zhǎng)線、邊AC于E、F.①探索:△BOE與△CFO還相似嗎?(只需寫(xiě)結(jié)論):連接EF,△BOE與△OFE是否相似?請(qǐng)說(shuō)明理由.②設(shè)EF=x,△EOF的面積是S,寫(xiě)出S與x的函數(shù)關(guān)系式.
分析:(1)找出△BOE與△CFO的對(duì)應(yīng)角,其中∠BOE+∠COF=135°,∠COF+∠CFO=135°,得出∠BOE=∠CFO,從而解決問(wèn)題;
(2)①小題同前可證,②小題可通過(guò)對(duì)應(yīng)邊成比例證明.
解答:(1)證明:∵在△ABC中,∠BAC=90°,AB=AC,
∴∠B=∠C=45°.
∵∠B+∠BOE+∠BEO=180°,
∴∠BOE+∠BEO=135°,
∵∠EOF=45°,
又∵∠BOE+∠EOF+∠COF=180°,
∴∠BOE+∠COF=135°,
∴∠BEO=∠COF,
又∵∠B=∠C,
∴△BOE∽△CFO(兩角對(duì)應(yīng)相等的兩個(gè)三角形相似).

(2)解:①△BOE∽△CFO;②△BOE與△OFE相似.
證明:同(1),可證△BOE∽△CFO,
得 CO:BE=OF:OE,
而CO=BO,
因此 OB:BE=OF:OE.
又因?yàn)椤螮BO=∠EOF,
所以△BOE∽△OFE(兩邊對(duì)應(yīng)成比例且?jiàn)A角相等的兩個(gè)三角形相似).
②△ABC為等腰直角三角形,且AB=AC=2,O為BC中點(diǎn),
∴BO=
2

設(shè)EO=y,
∵△BOE∽△OFE,
EO
BE
=
FO
BO
=
FE
EO

y
BE
=
FO
2
=
x
y
,
解得:FO=
2
x
y

則S△EOF=
1
2
•sin45°•EO•FO=
2
4
•EO•FO.
∵EO•FO=
2
x.
∴S=
1
2
x.
點(diǎn)評(píng):此題主要考查了相似三角形的判定.它以每位學(xué)生都有的三角板在圖形上的運(yùn)動(dòng)為背景,既考查了學(xué)生圖形旋轉(zhuǎn)變換的思想,靜中思動(dòng),動(dòng)中求靜的思維方法,又考查了學(xué)生動(dòng)手實(shí)踐、自主探究的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,∠A=36°,
(1)用尺規(guī)作圖的方法,過(guò)B點(diǎn)作∠ABC的平分線交AC于D(不寫(xiě)作法,保留作圖痕跡);
(2)求證:BC=BD=AD;
(3)求證:AD2=AC•DC;
(4)設(shè)
CDDA
=x,求x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,在△ABC中,AB=AC,點(diǎn)D,E在直線BC上運(yùn)動(dòng).如果∠DAE=l05°,△ABD∽△ECA,則∠BAC=
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)△ABC中,AB=AC,D、E分別是AB、AC的中點(diǎn),若AB=4,BC=6,則△ADE的周長(zhǎng)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、在△ABC中,AB=AC,BD是△ABC中線,已知△ABD和△BDC的周長(zhǎng)之差為6,△ABC的周長(zhǎng)是30,求這個(gè)等腰三角形的三邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在鈍角△ABC中,AB=AC,以BC為直徑作⊙O,⊙O與BA、CA的延長(zhǎng)線分別交于D、E兩點(diǎn)精英家教網(wǎng),連接AO、BE、DC.
(1)求證:△ABO∽△CBD;
(2)若AB=2AD,且BC=2,求∠ACB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案