如圖所示,圖(1)為一個(gè)長(zhǎng)方體,AD=AB=10,AE=6,圖2為圖1的表面展開(kāi)圖(字在外表面上),請(qǐng)根據(jù)要求回答問(wèn)題:
(1)面“揚(yáng)”的對(duì)面是面
 

(2)如果面“麗”是右面,面“美”在后面,哪一面會(huì)在上面?
(3)圖(1)中,M、N為所在棱的中點(diǎn),試在圖(2)中畫(huà)出點(diǎn)M、N的位置;并求出圖 (2)中三角形ABM的面積;
精英家教網(wǎng)
分析:(1)利用正方體及其表面展開(kāi)圖的特點(diǎn)解題.是一個(gè)正方體的平面展開(kāi)圖,共有六個(gè)面,其中面“麗”與面“州”相對(duì),面“愛(ài)”與面“揚(yáng)”相對(duì),面“我”與面“美”相對(duì),即可得出答案;
(2)根據(jù)如果面“麗”是右面,面“美”在后面,“愛(ài)”面會(huì)在上面;
(3)根據(jù)△ABM的底與高即可得出答案.
解答:精英家教網(wǎng)解:(1)面“f”與面“d”相對(duì),
∴面“揚(yáng)”的對(duì)面是面“愛(ài)”;
(2)由圖可知,如果面“麗”是右面,面“美”在后面,“揚(yáng)”面會(huì)在上面;

(3)根據(jù)三角形邊長(zhǎng)求出,△ABM的面積為10×5×
1
2
=25.
點(diǎn)評(píng):此題主要考查了正方形向?qū)蓚(gè)面上的文字規(guī)律,根據(jù)已知得出平面圖與立體圖形對(duì)應(yīng)情況是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•邢臺(tái)一模)如圖所示,一圓柱高AB為5cm,BC是底面直徑,設(shè)底面半徑長(zhǎng)度為acm,求點(diǎn)P從A點(diǎn)出發(fā)沿圓柱表面移動(dòng)到點(diǎn)C的最短路線.

方案設(shè)計(jì)
某班數(shù)學(xué)興趣小組設(shè)計(jì)了兩種方案:
圖1是方案一的示意圖,該方案中的移動(dòng)路線的長(zhǎng)度為l1,則l1=5+2a(cm);
圖2是方案二的示意圖,設(shè)l2是把圓柱沿AB側(cè)面展開(kāi)的線段AC的長(zhǎng)度,則l2=
25+π2a2
25+π2a2
cm(保留π).
計(jì)算探究

①當(dāng)a=3時(shí),比較大。簂1
 l2(填“>”“=”或“<”);
②當(dāng)a=4時(shí),比較大。簂1
 l2(填“>”“=”或“<”);
延伸拓展
在一般情況下,設(shè)圓柱的底面半徑為rcm.高為hcm.
①若l12=l22,求h與r之間的關(guān)系;
②假定r取定值,那么h取何值時(shí),l1<l2?
③假定r取定值,那么h取何值時(shí),l1>l2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇如城新民初中九年級(jí)上期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

要對(duì)一塊長(zhǎng)60m、寬40m的矩形荒地ABCD進(jìn)行綠化和硬化.

(1)設(shè)計(jì)方案如圖①所示,矩形P、Q為兩塊綠地,其余為硬化路面,P、Q兩塊綠地周?chē)挠不访鎸挾枷嗟,并使兩塊綠地面積的和為矩形ABCD面積的,求P、Q兩塊綠地周?chē)挠不访娴膶挘?br />(2)某同學(xué)有如下設(shè)想:設(shè)計(jì)綠化區(qū)域?yàn)橄嗤馇械膬傻葓A,圓心分別為O1和O2,且O1到AB,BC,AD的距離與O2到CD,BC,AD的距離都相等,其余為硬化地面,如圖②所示,這個(gè)設(shè)想是否成立?若成立,求出圓的半徑;若不成立,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇如城新民初中九年級(jí)上期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

要對(duì)一塊長(zhǎng)60m、寬40m的矩形荒地ABCD進(jìn)行綠化和硬化.

(1)設(shè)計(jì)方案如圖①所示,矩形P、Q為兩塊綠地,其余為硬化路面,P、Q兩塊綠地周?chē)挠不访鎸挾枷嗟,并使兩塊綠地面積的和為矩形ABCD面積的,求P、Q兩塊綠地周?chē)挠不访娴膶挘?/p>

(2)某同學(xué)有如下設(shè)想:設(shè)計(jì)綠化區(qū)域?yàn)橄嗤馇械膬傻葓A,圓心分別為O1和O2,且O1到AB,BC,AD的距離與O2到CD,BC,AD的距離都相等,其余為硬化地面,如圖②所示,這個(gè)設(shè)想是否成立?若成立,求出圓的半徑;若不成立,說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省鹽城市大豐四中九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

要對(duì)一塊長(zhǎng)60米、寬40米的矩形荒地ABCD進(jìn)行綠化和硬化.
(1)設(shè)計(jì)方案如圖①所示,矩形P、Q為兩塊綠地,其余為硬化路面,P、Q兩塊綠地周?chē)挠不访鎸挾枷嗟,并使兩塊綠地面積的和為矩形ABCD面積的,求P、Q兩塊綠地周?chē)挠不访娴膶挘?br />(2)某同學(xué)有如下設(shè)想:設(shè)計(jì)綠化區(qū)域?yàn)橄嗤馇械膬傻葓A,圓心分別為O1和O2,且O1到AB、BC、AD的距離與O2到CD、BC、AD的距離都相等,其余為硬化地面,如圖②所示,這個(gè)設(shè)想是否成立?若成立,求出圓的半徑;若不成立,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年天津市寶坻區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

要對(duì)一塊長(zhǎng)60米、寬40米的矩形荒地ABCD進(jìn)行綠化和硬化.
(1)設(shè)計(jì)方案如圖①所示,矩形P、Q為兩塊綠地,其余為硬化路面,P、Q兩塊綠地周?chē)挠不访鎸挾枷嗟,并使兩塊綠地面積的和為矩形ABCD面積的,求P、Q兩塊綠地周?chē)挠不访娴膶挘?br />(2)某同學(xué)有如下設(shè)想:設(shè)計(jì)綠化區(qū)域?yàn)橄嗤馇械膬傻葓A,圓心分別為O1和O2,且O1到AB、BC、AD的距離與O2到CD、BC、AD的距離都相等,其余為硬化地面,如圖②所示,這個(gè)設(shè)想是否成立?若成立,求出圓的半徑;若不成立,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案