20、如圖,△ABC是一個等邊三角形,點D、E分別在AB、AC上,F(xiàn)是BE和CD的交點,已知∠BFC=120°.求證:AD=CE.
分析:首先∠BFC=120°可以得到∠ECF=∠BFC-∠CEB=120°-∠CEB,又由△ABC是等邊三角形可以推出∠EBC=180°-60°-∠CEB=120°-∠CEB,由此得到∠DCA=∠EBC,然后利用等邊三角形的性質(zhì)證明△ACD≌△CBE,再利用全等三角形的性質(zhì)即可證明題目結(jié)論.
解答:證明:∵∠BFC=120°,
∴∠ECF=∠BFC-∠CEB=120°-∠CEB,
又△ABC是等邊三角形,
∴∠EBC=180°-60°-∠CEB=120°-∠CEB,
∴∠ECF=∠EBC,
即∠DCA=∠EBC,
又∵△ABC是等邊三角形,
∴∠CAD=∠BCE=60°,AC=CB
∴△ACD≌△CBE,
∴AD=CE.
點評:本題考查了全等三角形的判定及性質(zhì)及等邊三角形的性質(zhì);此題把全等三角形放在等邊三角形的背景中,利用等邊三角形的性質(zhì)來證明三角形全等,最后利用全等三角形的性質(zhì)解決問題,而∠DCA=∠EBC的得到既是證明三角形全等的關(guān)鍵,又是正確解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,△ABC是一個等邊三角形,它繞著點P旋轉(zhuǎn),可以與等邊△ABD重合,則這樣的點P有
3
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是一個邊長為1的等邊三角形,BB1是△ABC的高,B1B2是△ABB1的高,B2B3是△AB1B2的高,B3B4是△AB2B3的高,…Bn-1Bn是△ABn-2Bn-1的高
(1)求BB1的長;
(2)填空:B1B2的長為
 
,B2B3的長為
 
;
(3)根據(jù)(1)、(2)的計算結(jié)果,猜想寫出Bn-1Bn的值(用含n的代數(shù)式表示,n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是一個圓錐的左視圖,其中AB=AC=5,BC=8,則這個圓錐的側(cè)面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是一個等腰三角形,直角邊的長度是1米,現(xiàn)在以點C為圓心,把三角形ABC順時針旋轉(zhuǎn)90度,那么,AB邊在旋轉(zhuǎn)時所掃過的面積是(  )平方米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•懷柔區(qū)一模)如圖,△ABC是一個邊長為2的等邊三角形,AD0⊥BC,垂足為點D0.過點D0作D0D1⊥AB,垂足為點D1;再過點D1作D1D2⊥AD0,垂足為點D2;又過點D2作D2D3⊥AB,垂足為點D3;…;這樣一直作下去,得到一組線段:D0D1,D1D2,D2D3,…,則線段D1D2的長為
3
4
3
4
,線段Dn-1Dn的長為
(
3
2
)n
(
3
2
)n
(n為正整數(shù)).

查看答案和解析>>

同步練習(xí)冊答案