函數(shù)的自變量x的取值范圍是( )
A.x≥2
B.x≥3
C.x≠3
D.x≥2且x≠3
【答案】分析:本題中,根號(hào)內(nèi)的數(shù)大于等于零,分式中,分母不等于零,因此題目中要想使式子有意義,只要有x-2≥0且x-3≠0,就可以求出x的范圍.
解答:解:根據(jù)題意得:x-2≥0且x-3≠0,
解得:x≥2且x≠3.
故選D.
點(diǎn)評(píng):函數(shù)自變量的范圍一般從三個(gè)方面考慮:
(1)當(dāng)函數(shù)表達(dá)式是整式時(shí),自變量可取全體實(shí)數(shù);
(2)當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為0;
(3)當(dāng)函數(shù)表達(dá)式是二次根式時(shí),被開方數(shù)非負(fù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:第6章《二次函數(shù)》中考題集(36):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖①,點(diǎn)A′,B′的坐標(biāo)分別為(2,0)和(0,-4),將△A′B′O繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°后得△ABO,點(diǎn)A′的對(duì)應(yīng)點(diǎn)是點(diǎn)A,點(diǎn)B′的對(duì)應(yīng)點(diǎn)是點(diǎn)B.
(1)寫出A,B兩點(diǎn)的坐標(biāo),并求出直線AB的解析式;
(2)將△ABO沿著垂直于x軸的線段CD折疊,(點(diǎn)C在x軸上,點(diǎn)D在AB上,點(diǎn)D不與A,B重合)如圖②,使點(diǎn)B落在x軸上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.設(shè)點(diǎn)C的坐標(biāo)為(x,0),△CDE與△ABO重疊部分的面積為S.
①試求出S與x之間的函數(shù)關(guān)系式(包括自變量x的取值范圍);
②當(dāng)x為何值時(shí),S的面積最大,最大值是多少?
③是否存在這樣的點(diǎn)C,使得△ADE為直角三角形?若存在,直接寫出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第26章《二次函數(shù)》中考題集(34):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

如圖①,點(diǎn)A′,B′的坐標(biāo)分別為(2,0)和(0,-4),將△A′B′O繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°后得△ABO,點(diǎn)A′的對(duì)應(yīng)點(diǎn)是點(diǎn)A,點(diǎn)B′的對(duì)應(yīng)點(diǎn)是點(diǎn)B.
(1)寫出A,B兩點(diǎn)的坐標(biāo),并求出直線AB的解析式;
(2)將△ABO沿著垂直于x軸的線段CD折疊,(點(diǎn)C在x軸上,點(diǎn)D在AB上,點(diǎn)D不與A,B重合)如圖②,使點(diǎn)B落在x軸上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.設(shè)點(diǎn)C的坐標(biāo)為(x,0),△CDE與△ABO重疊部分的面積為S.
①試求出S與x之間的函數(shù)關(guān)系式(包括自變量x的取值范圍);
②當(dāng)x為何值時(shí),S的面積最大,最大值是多少?
③是否存在這樣的點(diǎn)C,使得△ADE為直角三角形?若存在,直接寫出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(37):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖①,點(diǎn)A′,B′的坐標(biāo)分別為(2,0)和(0,-4),將△A′B′O繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°后得△ABO,點(diǎn)A′的對(duì)應(yīng)點(diǎn)是點(diǎn)A,點(diǎn)B′的對(duì)應(yīng)點(diǎn)是點(diǎn)B.
(1)寫出A,B兩點(diǎn)的坐標(biāo),并求出直線AB的解析式;
(2)將△ABO沿著垂直于x軸的線段CD折疊,(點(diǎn)C在x軸上,點(diǎn)D在AB上,點(diǎn)D不與A,B重合)如圖②,使點(diǎn)B落在x軸上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.設(shè)點(diǎn)C的坐標(biāo)為(x,0),△CDE與△ABO重疊部分的面積為S.
①試求出S與x之間的函數(shù)關(guān)系式(包括自變量x的取值范圍);
②當(dāng)x為何值時(shí),S的面積最大,最大值是多少?
③是否存在這樣的點(diǎn)C,使得△ADE為直角三角形?若存在,直接寫出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(33):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖①,點(diǎn)A′,B′的坐標(biāo)分別為(2,0)和(0,-4),將△A′B′O繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°后得△ABO,點(diǎn)A′的對(duì)應(yīng)點(diǎn)是點(diǎn)A,點(diǎn)B′的對(duì)應(yīng)點(diǎn)是點(diǎn)B.
(1)寫出A,B兩點(diǎn)的坐標(biāo),并求出直線AB的解析式;
(2)將△ABO沿著垂直于x軸的線段CD折疊,(點(diǎn)C在x軸上,點(diǎn)D在AB上,點(diǎn)D不與A,B重合)如圖②,使點(diǎn)B落在x軸上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.設(shè)點(diǎn)C的坐標(biāo)為(x,0),△CDE與△ABO重疊部分的面積為S.
①試求出S與x之間的函數(shù)關(guān)系式(包括自變量x的取值范圍);
②當(dāng)x為何值時(shí),S的面積最大,最大值是多少?
③是否存在這樣的點(diǎn)C,使得△ADE為直角三角形?若存在,直接寫出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市延慶縣中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖①,點(diǎn)A′,B′的坐標(biāo)分別為(2,0)和(0,-4),將△A′B′O繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°后得△ABO,點(diǎn)A′的對(duì)應(yīng)點(diǎn)是點(diǎn)A,點(diǎn)B′的對(duì)應(yīng)點(diǎn)是點(diǎn)B.
(1)寫出A,B兩點(diǎn)的坐標(biāo),并求出直線AB的解析式;
(2)將△ABO沿著垂直于x軸的線段CD折疊,(點(diǎn)C在x軸上,點(diǎn)D在AB上,點(diǎn)D不與A,B重合)如圖②,使點(diǎn)B落在x軸上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.設(shè)點(diǎn)C的坐標(biāo)為(x,0),△CDE與△ABO重疊部分的面積為S.
①試求出S與x之間的函數(shù)關(guān)系式(包括自變量x的取值范圍);
②當(dāng)x為何值時(shí),S的面積最大,最大值是多少?
③是否存在這樣的點(diǎn)C,使得△ADE為直角三角形?若存在,直接寫出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案