精英家教網 > 初中數學 > 題目詳情

如圖,現有兩塊全等的直角三角形紙板Ⅰ,Ⅱ,它們兩直角邊的長分別為1和2.將它們分別放置于平面直角坐標系中的,處,直角邊軸上.一直尺從上方緊靠兩紙板放置,讓紙板Ⅰ沿直尺邊緣平行移動.當紙板Ⅰ移動至處時,設分別交于點,與軸分別交于點

(1)求直線所對應的函數關系式;

(2)當點是線段(端點除外)上的動點時,試探究:

①點軸的距離與線段的長是否總相等?請說明理由;

②兩塊紙板重疊部分(圖中的陰影部分)的面積是否存在最大值?若存在,求出這個最大值及取最大值時點的坐標;若不存在,請說明理由.

解:(1)由直角三角形紙板的兩直角邊的長為1和2,知兩點的坐標分別為.設直線所對應的函數關系式為

解得

所以,直線所對應的函數關系式為

(2)①點軸距離與線段的長總相等.

因為點的坐標為,

所以,直線所對應的函數關系式為

又因為點在直線上,

所以可設點的坐標為

過點軸的垂線,設垂足為點,則有

因為點在直線上,所以有

因為紙板為平行移動,故有,即

,所以

法一:故,

從而有

,

所以

又有

所以,得,而,

從而總有

法二:故,可得

所以

點坐標為

設直線所對應的函數關系式為

則有解得

所以,直線所對的函數關系式為

將點的坐標代入,可得.解得

,從而總有

②由①知,點的坐標為,點的坐標為

時,有最大值,最大值為

取最大值時點的坐標為

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,現有兩塊全等的直角三角形紙板Ⅰ,Ⅱ,它們兩直角邊的長分別為1和2.將它們分別放置于平面直角坐標系中的△AOB,△COD處,直角邊OB,OD在x軸上.一直尺精英家教網從上方緊靠兩紙板放置,讓紙板Ⅰ沿直尺邊緣平行移動.當紙板Ⅰ移動至△PEF處時,設PE,PF與OC分別交于點M,N,與x軸分別交于點G,H.
(1)求直線AC所對應的函數關系式;
(2)當點P是線段AC(端點除外)上的動點時,試探究:
①點M到x軸的距離h與線段BH的長是否總相等?請說明理由;
②兩塊紙板重疊部分(圖中的陰影部分)的面積S是否存在最大值?若存在,求出這個最大值及S取最大值時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年初中畢業(yè)升學考試(江蘇連云港卷)數學(帶解析) 題型:解答題

如圖,現有兩塊全等的直角三角形紙板Ⅰ,Ⅱ,它們兩直角邊的長分別為1和2.將它們分別放置于平面直角坐標系中的,處,直角邊軸上.一直尺從上方緊靠兩紙板放置,讓紙板Ⅰ沿直尺邊緣平行移動.當紙板Ⅰ移動至處時,設分別交于點,與軸分別交于點
(1)求直線所對應的函數關系式;
(2)當點是線段(端點除外)上的動點時,試探究:
①點軸的距離與線段的長是否總相等?請說明理由;
②兩塊紙板重疊部分(圖中的陰影部分)的面積是否存在最大值?若存在,求出這個最大值及取最大值時點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》?碱}集(23):2.3 二次函數的應用(解析版) 題型:解答題

如圖,現有兩塊全等的直角三角形紙板Ⅰ,Ⅱ,它們兩直角邊的長分別為1和2.將它們分別放置于平面直角坐標系中的△AOB,△COD處,直角邊OB,OD在x軸上.一直尺從上方緊靠兩紙板放置,讓紙板Ⅰ沿直尺邊緣平行移動.當紙板Ⅰ移動至△PEF處時,設PE,PF與OC分別交于點M,N,與x軸分別交于點G,H.
(1)求直線AC所對應的函數關系式;
(2)當點P是線段AC(端點除外)上的動點時,試探究:
①點M到x軸的距離h與線段BH的長是否總相等?請說明理由;
②兩塊紙板重疊部分(圖中的陰影部分)的面積S是否存在最大值?若存在,求出這個最大值及S取最大值時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:第26章《二次函數》中考題集(36):26.3 實際問題與二次函數(解析版) 題型:解答題

如圖,現有兩塊全等的直角三角形紙板Ⅰ,Ⅱ,它們兩直角邊的長分別為1和2.將它們分別放置于平面直角坐標系中的△AOB,△COD處,直角邊OB,OD在x軸上.一直尺從上方緊靠兩紙板放置,讓紙板Ⅰ沿直尺邊緣平行移動.當紙板Ⅰ移動至△PEF處時,設PE,PF與OC分別交于點M,N,與x軸分別交于點G,H.
(1)求直線AC所對應的函數關系式;
(2)當點P是線段AC(端點除外)上的動點時,試探究:
①點M到x軸的距離h與線段BH的長是否總相等?請說明理由;
②兩塊紙板重疊部分(圖中的陰影部分)的面積S是否存在最大值?若存在,求出這個最大值及S取最大值時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年江蘇省中考數學仿真試卷(解析版) 題型:解答題

(2008•連云港)如圖,現有兩塊全等的直角三角形紙板Ⅰ,Ⅱ,它們兩直角邊的長分別為1和2.將它們分別放置于平面直角坐標系中的△AOB,△COD處,直角邊OB,OD在x軸上.一直尺從上方緊靠兩紙板放置,讓紙板Ⅰ沿直尺邊緣平行移動.當紙板Ⅰ移動至△PEF處時,設PE,PF與OC分別交于點M,N,與x軸分別交于點G,H.
(1)求直線AC所對應的函數關系式;
(2)當點P是線段AC(端點除外)上的動點時,試探究:
①點M到x軸的距離h與線段BH的長是否總相等?請說明理由;
②兩塊紙板重疊部分(圖中的陰影部分)的面積S是否存在最大值?若存在,求出這個最大值及S取最大值時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案