閱讀材料:如圖(一),△ABC的周長(zhǎng)為l,內(nèi)切圓O的半徑為r,連接OA、OB、OC,△ABC被劃分為三個(gè)小三角形,用S△ABC表示△ABC的面積.
作業(yè)寶
∵S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=數(shù)學(xué)公式AB•r,S△OBC=數(shù)學(xué)公式BC•r,S△OCA=數(shù)學(xué)公式CA•r
∴S△ABC=數(shù)學(xué)公式AB•r+數(shù)學(xué)公式BC•r+數(shù)學(xué)公式CA•r=數(shù)學(xué)公式l•r(可作為三角形內(nèi)切圓半徑公式)
(1)理解與應(yīng)用:利用公式計(jì)算邊長(zhǎng)分為5、12、13的三角形內(nèi)切圓半徑;
(2)類(lèi)比與推理:若四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓,如圖(二))且面積為S,各邊長(zhǎng)分別為a、b、c、d,試推導(dǎo)四邊形的內(nèi)切圓半徑公式;
(3)拓展與延伸:若一個(gè)n邊形(n為不小于3的整數(shù))存在內(nèi)切圓,且面積為S,各邊長(zhǎng)分別為a1、a2、a3、…、an,合理猜想其內(nèi)切圓半徑公式(不需說(shuō)明理由).

解:(1)以5,12,13為邊長(zhǎng)的三角形為直角三角形,易求得;

(2)連接OA,OB,OC,OD,并設(shè)內(nèi)接圓半徑為r,
可得S四邊形ABCD=S△OAB+S△OBC+S△OCD+S△ODA
=a•r+b•r+c•r+d•r=(a+b+c+d)•r.
;

(3)猜想:
分析:(1)根據(jù)上述三角形的內(nèi)切圓的半徑公式,由已知條件,結(jié)合勾股定理的逆定理得該三角形是直角三角形.可以首先求得其面積是30,其周長(zhǎng)是5+12+13=30.再根據(jù)其公式代入計(jì)算;
(2)同樣連接圓心和四邊形的各個(gè)頂點(diǎn)以及圓心和的切點(diǎn),根據(jù)四邊形的面積等于四個(gè)直角三角形的面積進(jìn)行計(jì)算;
(3)根據(jù)上述方法和結(jié)論,即可猜想到:任意多邊形的內(nèi)切圓的半徑等于其面積的2倍除以多邊形的周長(zhǎng).
點(diǎn)評(píng):考查了學(xué)生由特殊推廣到一般的能力,掌握多邊形的內(nèi)切圓的半徑的計(jì)算方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:如圖(一),△ABC的周長(zhǎng)為l,內(nèi)切圓O的半徑為r,連接OA、OB、OC,△ABC被劃分為三個(gè)小三角形,用S△ABC表示△ABC的面積.
精英家教網(wǎng)
∵S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=
1
2
AB•r,S△OBC=
1
2
BC•r,S△OCA=
1
2
CA•r
∴S△ABC=
1
2
AB•r+
1
2
BC•r+
1
2
CA•r=
1
2
l•r(可作為三角形內(nèi)切圓半徑公式)
(1)理解與應(yīng)用:利用公式計(jì)算邊長(zhǎng)分為5、12、13的三角形內(nèi)切圓半徑;
(2)類(lèi)比與推理:若四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓,如圖(二))且面積為S,各邊長(zhǎng)分別為a、b、c、d,試推導(dǎo)四邊形的內(nèi)切圓半徑公式;
(3)拓展與延伸:若一個(gè)n邊形(n為不小于3的整數(shù))存在內(nèi)切圓,且面積為S,各邊長(zhǎng)分別為a1、a2、a3、…、an,合理猜想其內(nèi)切圓半徑公式(不需說(shuō)明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

25、閱讀材料:
如圖(一),在已建立直角坐標(biāo)系的方格紙中,圖形①的頂點(diǎn)為A、B、C,要將它變換到圖④(變換過(guò)程中圖形的頂點(diǎn)必須在格點(diǎn)上,且不能超出方格紙的邊界).
例如:將圖形①作如下變換(如圖二).
第一步:平移,使點(diǎn)C(6,6)移至點(diǎn)(4,3),得圖②;
第二步:旋轉(zhuǎn),繞著點(diǎn)(4,3)旋轉(zhuǎn)180°,得圖③;
第三步:平移,使點(diǎn)(4,3)移至點(diǎn)O(0,0),得圖④.
則圖形①被變換到了圖④.

解決問(wèn)題:
(1)在上述變化過(guò)程中A點(diǎn)的坐標(biāo)依次為:
(4,6)→(
2
,
3
)→(
6
3
)→(
2
,
0

(2)如圖(三),仿照例題格式,在直角坐標(biāo)系的方格紙中將△DEF經(jīng)過(guò)平移、旋轉(zhuǎn)、翻折等變換得到△OPQ.(寫(xiě)出變換步驟,并畫(huà)出相應(yīng)的圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

閱讀材料:如圖①,一扇窗戶(hù)打開(kāi)后用窗鉤可將其固定.

(1)這里所運(yùn)用的幾何原理是(    )

A.三角形的穩(wěn)定性            B.兩點(diǎn)之間線(xiàn)段最短

C.兩點(diǎn)確定一條直線(xiàn)      D.垂線(xiàn)段最短

(2)如圖②是圖①中窗子開(kāi)到一定位置時(shí)的平面圖,若,,=60cm,求點(diǎn)到邊的距離.(結(jié)果保留根號(hào))

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

閱讀材料:如圖①,一扇窗戶(hù)打開(kāi)后用窗鉤可將其固定.

(1)這里所運(yùn)用的幾何原理是(   )
A.三角形的穩(wěn)定性B.兩點(diǎn)之間線(xiàn)段最短
C.兩點(diǎn)確定一條直線(xiàn)D.垂線(xiàn)段最短
(2)如圖②是圖①中窗子開(kāi)到一定位置時(shí)的平面圖,若,,=60cm,求點(diǎn)到邊的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年烏海二中初三畢業(yè)暨模擬考試 題型:解答題

閱讀材料:如圖①,一扇窗戶(hù)打開(kāi)后用窗鉤可將其固定.

(1)這里所運(yùn)用的幾何原理是(    )

A.三角形的穩(wěn)定性             B.兩點(diǎn)之間線(xiàn)段最短

C.兩點(diǎn)確定一條直線(xiàn)       D.垂線(xiàn)段最短

(2)如圖②是圖①中窗子開(kāi)到一定位置時(shí)的平面圖,若,=60cm,求點(diǎn)到邊的距離.(結(jié)果保留根號(hào))

 

查看答案和解析>>

同步練習(xí)冊(cè)答案