若一個(gè)多邊形的每個(gè)外角都為36°,則這個(gè)多邊形的對(duì)角線有__________條.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖所示,武漢有三個(gè)車站A、B、C成三角形,一輛公共汽車從B站前往到
C站.
(1)當(dāng)汽車運(yùn)動(dòng)到點(diǎn)D時(shí),剛好BD=CD,連接AD,AD這條線段是什么線段?這樣的線段在△ABC中有幾條?此時(shí)有面積相等的三角形嗎?
(2)汽車?yán)^續(xù)向前運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到點(diǎn)E時(shí),發(fā)現(xiàn)∠BAE=∠CAE,那么AE這條線段是什么線段?在△ABC中,這樣的線段又有幾條?
(3)汽車?yán)^續(xù)向前運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到點(diǎn)F時(shí),發(fā)現(xiàn)∠AFB=∠AFC=90°,則AF是什么線段?這樣的線段有幾條?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(。┲。
對(duì)于任意正實(shí)數(shù)a、b,可作如下變形a+b==-+=+ ,
又∵≥0, ∴+ ≥0+,即≥.
(1)根據(jù)上述內(nèi)容,回答下列問題:在≥(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,當(dāng)且僅當(dāng)a、b滿足 時(shí),a+b有最小值.
(2)思考驗(yàn)證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b, 試根據(jù)圖形驗(yàn)證≥成立,并指出等號(hào)成立時(shí)的條件.
(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)的圖像上一點(diǎn),A點(diǎn)的橫坐標(biāo)為1,將一塊三角板的直角頂點(diǎn)放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點(diǎn)D、E,F(xiàn)(0,-3)為y軸上一點(diǎn),連結(jié)DF、EF,求四邊形ADFE面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線y=x2﹣x與x軸交于O,A兩點(diǎn).半徑為1的動(dòng)圓(⊙P),圓心從O點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)A的方向移動(dòng);半徑為2的動(dòng)圓(⊙Q),圓心從A點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)O的方向移動(dòng).兩圓同時(shí)出發(fā),且移動(dòng)速度相等,當(dāng)運(yùn)動(dòng)到P,Q兩點(diǎn)重合時(shí)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的橫坐標(biāo)為t.若⊙P與⊙Q相離,則t的取值范圍是_____ ____ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com