若一個(gè)多邊形的每個(gè)外角都為36°,則這個(gè)多邊形的對(duì)角線有__________條.


35   解析:設(shè)這個(gè)多邊形的邊數(shù)為,則,所以這個(gè)多邊形是十邊形.因?yàn)檫呅蔚膶?duì)角線的總條數(shù)為,所以這個(gè)多邊形的對(duì)角線的條數(shù)為.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


請(qǐng)你先化簡(jiǎn)代數(shù)式,再?gòu)?,3,-1中選擇一個(gè)合適的a的值代入求值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知點(diǎn)P1(a-1,5)和P2(2,b-1)關(guān)于x軸對(duì)稱,則(a+b)2009的值為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


五邊形的內(nèi)角和是(    )

A.180°        B.360°       C.540°           D.600°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


若將邊形邊數(shù)增加1倍,則它的內(nèi)角和增加__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖所示,武漢有三個(gè)車站AB、C成三角形,一輛公共汽車從B站前往到

C站.

(1)當(dāng)汽車運(yùn)動(dòng)到點(diǎn)D時(shí),剛好BD=CD,連接AD,AD這條線段是什么線段?這樣的線段在△ABC中有幾條?此時(shí)有面積相等的三角形嗎?

(2)汽車?yán)^續(xù)向前運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到點(diǎn)E時(shí),發(fā)現(xiàn)∠BAE=∠CAE,那么AE這條線段是什么線段?在△ABC中,這樣的線段又有幾條?

(3)汽車?yán)^續(xù)向前運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到點(diǎn)F時(shí),發(fā)現(xiàn)∠AFB=∠AFC=90°,則AF是什么線段?這樣的線段有幾條?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


兩圓的半徑分別為,圓心距為4.若,則兩圓(     )

A.內(nèi)含             B.相交              C.外切            D.外離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(。┲。

對(duì)于任意正實(shí)數(shù)a、b,可作如下變形a+b==-+=+ ,

又∵≥0, ∴+ ≥0+,即

(1)根據(jù)上述內(nèi)容,回答下列問題:在a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b,當(dāng)且僅當(dāng)a、b滿足     時(shí),a+b有最小值

(2)思考驗(yàn)證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b, 試根據(jù)圖形驗(yàn)證成立,并指出等號(hào)成立時(shí)的條件.

 (3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)的圖像上一點(diǎn),A點(diǎn)的橫坐標(biāo)為1,將一塊三角板的直角頂點(diǎn)放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點(diǎn)D、E,F(xiàn)(0,-3)為y軸上一點(diǎn),連結(jié)DF、EF,求四邊形ADFE面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,拋物線y=x2﹣x與x軸交于O,A兩點(diǎn).半徑為1的動(dòng)圓(⊙P),圓心從O點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)A的方向移動(dòng);半徑為2的動(dòng)圓(⊙Q),圓心從A點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)O的方向移動(dòng).兩圓同時(shí)出發(fā),且移動(dòng)速度相等,當(dāng)運(yùn)動(dòng)到P,Q兩點(diǎn)重合時(shí)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的橫坐標(biāo)為t.若⊙P與⊙Q相離,則t的取值范圍是_____   ____ 

查看答案和解析>>

同步練習(xí)冊(cè)答案