如圖,△ABC內(nèi)接于⊙O,AD是⊙O直徑,E是CB延長(zhǎng)線上一點(diǎn),且∠BAE=∠C.

(1)求證:直線AE是⊙O的切線;
(2)若EB=AB,,AE=24,求EB的長(zhǎng)及⊙O的半徑.

(1)見(jiàn)解析(2)15,,

解析試題分析: (1)證明:連結(jié)BD.
∵AD是⊙O的直徑,
∴∠ABD=90°.
∴∠1+∠D=90°. 
∵∠C=∠D,∠C=∠BAE,
∴∠D=∠BAE.  
∴∠1+∠BAE=90°.
即∠DAE=90°.
∵AD是⊙O的直徑,
∴直線AE是⊙O的切線. 
(2)解: 過(guò)點(diǎn)B作BF⊥AE于點(diǎn)F, 則∠BFE=90°.
∵EB="AB,"
∴∠E=∠BAE,
∵∠BFE=90°,

∴AB="15."
由(1)∠D=∠BAE,又∠E=∠BAE,
∴∠D=∠E.
∵∠ABD=90°,

設(shè)BD=4k,則AD=5k.
在Rt △ABD中, 由勾股定理得AB=="3k=15,"
∴k=5.

∴⊙O的半徑為.
考點(diǎn):本題考查了勾股定理和圓的基本知識(shí)
點(diǎn)評(píng):此類試題屬于難度較大的試題也是圓的基本知識(shí)的?碱},考生在解答此類試題時(shí)一定要注意分析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC=4.BD為⊙O的直徑,則BD=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,∠A=∠D=30°.
(1)判斷DC是否為⊙O的切線,并說(shuō)明理由;
(2)證明:△AOC≌△DBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,△ABC內(nèi)接于⊙O,連接AO并延長(zhǎng)交BC于點(diǎn)D,若AO=5,BC=8,∠ADB=90°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,△ABC內(nèi)接于⊙O,∠A=30°,若BC=4cm,則⊙O的直徑為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC內(nèi)接于⊙O,AD⊥BC于點(diǎn)D,求證:∠BAD=∠CAO.

查看答案和解析>>

同步練習(xí)冊(cè)答案