(2009•衡陽)如圖,△ABC中,AB=AC,AD、AE分別是∠BAC和∠BAC和外角的平分線,BE⊥AE.
(1)求證:DA⊥AE;
(2)試判斷AB與DE是否相等?并證明你的結(jié)論.

【答案】分析:(1)根據(jù)角平分線的性質(zhì),及∠BAC+∠BAF=180°可求出∠DAE=90°,即DA⊥AE;
(2)要證AB=DE,需證四邊形AEBD是矩形,由AB=AC,AD為∠BAC的角平分線,可知AD⊥BC,又因為DA⊥AE,BE⊥AE故,
所以∠AEB=90°,∠DAE=90°即證四邊形AEBD是矩形.
解答:(1)證明:∵AD平分∠BAC,
∴∠BAD=∠BAC,
又∵AE平分∠BAF,
∴∠BAE=∠BAF,
∵∠BAC+∠BAF=180°,
∴∠BAD+∠BAE=(∠BAC+∠BAF)=×180°=90°,
即∠DAE=90°,
故DA⊥AE.

(2)解:AB=DE.理由是:
∵AB=AC,AD平分∠BAC,
∴AD⊥BC,故∠ADB=90°
∵BE⊥AE,
∴∠AEB=90°,∠DAE=90°,
故四邊形AEBD是矩形.
∴AB=DE.
點評:本題考查的是角平分線,等腰三角形的性質(zhì)及矩形的判定定理.有一定的綜合性.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年江蘇省揚州中學樹人學校中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•衡陽)如圖,AB是⊙O的直徑,弦BC=2cm,∠ABC=60度.

(1)求⊙O的直徑;
(2)若D是AB延長線上一點,連接CD,當BD長為多少時,CD與⊙O相切;
(3)若動點E以2cm/s的速度從A點出發(fā)沿著AB方向運動,同時動點F以1cm/s的速度從B點出發(fā)沿BC方向運動,設(shè)運動時間為t(s)(0<t<2),連接EF,當t為何值時,△BEF為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年河北省唐山市樂亭縣中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•衡陽)如圖,AB是⊙O的直徑,弦BC=2cm,∠ABC=60度.

(1)求⊙O的直徑;
(2)若D是AB延長線上一點,連接CD,當BD長為多少時,CD與⊙O相切;
(3)若動點E以2cm/s的速度從A點出發(fā)沿著AB方向運動,同時動點F以1cm/s的速度從B點出發(fā)沿BC方向運動,設(shè)運動時間為t(s)(0<t<2),連接EF,當t為何值時,△BEF為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《投影與視圖》(02)(解析版) 題型:選擇題

(2009•衡陽)如圖所示,幾何體的左視圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖南省衡陽市中考數(shù)學試卷(解析版) 題型:選擇題

(2009•衡陽)如圖所示,A、B、C分別表示三個村莊,AB=1000米,BC=600米,AC=800米,在社會主義新農(nóng)村建設(shè)中,為了豐富群眾生活,擬建一個文化活動中心,要求這三個村莊到活動中心的距離相等,則活動中心P的位置應(yīng)在( )

A.AB中點
B.BC中點
C.AC中點
D.∠C的平分線與AB的交點

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖南省衡陽市中考數(shù)學試卷(解析版) 題型:選擇題

(2009•衡陽)如圖所示,幾何體的左視圖是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案