【題目】計算題
(1)解方程組 ;
(2)解不等式: <4﹣ ,并把解集在數(shù)軸上表示出來.
【答案】
(1)解: ,
由①得:x=3y﹣7,
將③代入②,得2(3y﹣7)=5y,
解得y=14.
將y=14代入③得:x=35.
所以原方程組的解是
(2)解:去分母,得3(x+4)<24﹣2(2x﹣1),
去括號,得3x+12<24﹣4x+2,
移項,合并得7x<14,
系數(shù)化為1,得x<2.
所以原不等式的解集為:x<2,
在數(shù)軸上表示為:
【解析】(1)利用代入消元法求出解即可;(2)先去分母,再去括號、移項、合并同類項,系數(shù)化為1,求出不等式的解集,再在數(shù)軸上表示出來即可.
【考點精析】關(guān)于本題考查的解二元一次方程組和不等式的解集在數(shù)軸上的表示,需要了解二元一次方程組:①代入消元法;②加減消元法;不等式的解集可以在數(shù)軸上表示,分三步進(jìn)行:①畫數(shù)軸②定界點③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=30°,將△DCB繞點C順時針旋轉(zhuǎn)60°后,點D的對應(yīng)點恰好與點A重合,得到△ACE,若AB=3,BC=4,則BD=(提示:可連接BE)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點P(1,0).點P第1次向上跳動1個單位至點P1(1,1),緊接著第2次向左跳動2個單位至點P2(-1,1),第3次向上跳動1個單位至點P3,第4次向右跳動3個單位至點P4,第5次又向上跳動1個單位至點P5,第6次向左跳動4個單位至點P6,…….照此規(guī)律,點P第100次跳動至點P100的坐標(biāo)是( )
A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自學(xué):如圖1,△ABC中,D是BC邊上一點,則△ABD與△ADC有一個相同的高,它們的面積之比等于相應(yīng)的底之比,記為 = .
(△ABD,△ADC的面積分別用記號S△ABD , S△ADC表示)
(1)心得:如圖1,若BD= DC,則S△ABD:S△ADC=
(2)成長:如圖2,△ABC中,M,N分別是AB,AC邊上一點,且有AM:MB=2:1,AN:NC=1:1,則△AMN與△ABC的面積比為 .
(3)巔峰:如圖3,△ABC中,P,Q,R分別是BC,CA,AB邊上的點,且AP,BQ,CR相交于點O,現(xiàn)已知△BPO,△PCO,△COQ,△AOR的面積依次為40,30,35,84,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AOB是一條直線,OC是∠AOD的平分線,OE 是∠BOD的平分線.
(1)若∠AOE=140°,求∠AOC的度數(shù);
(2)若∠EOD :∠COD=2 : 3,求∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】6月5日是“世界環(huán)境日”,某校從3名男生和2名女生中隨機(jī)抽取學(xué)生去參加市中學(xué)生環(huán)保演講比賽.
(1)若抽取1名學(xué)生參加,恰好是男生的概率是;
(2)如果抽取1名學(xué)生參加,請用列表或樹狀圖求出恰好是1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上一點,且
.動點P從點A出發(fā),以每秒6個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為t()秒.
(1)請寫出數(shù)軸上點B表示的數(shù) ,點P表示的數(shù) (用含t 的整式表示);
(2)若M為AP的中點,N為PB的中點.點P在運動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段MN的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面我們做一次折疊活動:
第一步,在一張寬為2的矩形紙片的一端,利用圖(1)的方法折出一個正方形,然后把紙片展平,折痕為MC;
第二步,如圖(2),把這個正方形折成兩個相等的矩形,再把紙片展平,折痕為FA;
第三步,折出內(nèi)側(cè)矩形FACB的對角線AB,并將AB折到圖(3)中所示的AD處,折痕為AQ.
根據(jù)以上的操作過程,完成下列問題:
(1)求CD的長.
(2)請判斷四邊形ABQD的形狀,并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( )
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com