下列方程的解分別是:
(1)
x-1
x+1
+
2x
1-x2
=0
 

(2)
x+3
x2-3x+2
+
x+2
x2-4x+3
=
x+1
x2-5x+6
 

(3)2(x+
1
x
)2-3(x+
1
x
)-5=0
 

(4)x2+2x-
3
x2+2x+1
=2
 

(5)
1
x2-2x-1
+
2
x2-2x-2
=
3
x2-2x-3
 

(6)
1
x-1
-
1
x-2
=
1
x-6
-
1
x-7
 

(7)
x-8
x-10
+
x-4
x-6
=
x-5
x-7
+
x-7
x-9
 
分析:這幾道題應(yīng)注意換元法的運(yùn)用;解決此類題如
x-8
x-10
+
x-4
x-6
=
x-5
x-7
+
x-7
x-9
,關(guān)鍵是使其分母先相等或分子先相等,再使其分子或分母相等.
解答:解:(1)∵
x-1
x+1
-
2x
(x+1)(x-1)
=0
,∴(x-1)2-2x=0,
x2-4x+1=0,x1=2+
3
,x2=2-
3
;
2)∵
x+3
(x-1)(x-2)
+
(x+2)
(x-1)(x-3)
=
x+1
(x-2)(x-3)
,
∴(x+3)(x-3)+(x+2)(x-2)=(x+1)(x-1),
∴x2=12,∴x1=2
3
,x2=-2
3

(3)令y=x+
1
x
,則原方程化為2y2-3y-5=0,
y1=-1,y2=
5
2
,∴x+
1
x
=-1,x2+x+1=0
無解,或x+
1
x
=
5
2
,
∴2x2-5x+2=0,∴x1=2,x2=
1
2
;
(4)令x2+2x-1=y,則原方程化為y-
3
y
=2
,∴y2-2y-3=0,∴y1=3,y2=-1,∴x2-2x-1=3,即x2-2x-4=0,∴x1=
5
-1,x2=-
5
-1

或x2+2x-1=-1,∴x3=0,x4=-2.
(5)設(shè)x2-2x-1=y,則原方程化為
1
y
+
2
y-1
=
3
y-2

∴(y-1)(y-2)+2y(y-2)-3y(y-1)=0,∴4y-2=0,y=
1
2
,∴x2-2x-1=
1
2
,∴2x2-4x-3=0,
x1=
2+
10
2
,x2=
2-
10
2

(6)∵
(x-2)-(x-1)
(x-2)(x-1)
=
(x-7)-(x-6)
(x-6)(x-7)
,
1
(x-2)(x-1)
=
1
(x-6)(x-7)

∴10x=40,∴x=4.
(7)
x-10+2
x-10
+
x-6+2
x-6
=
x-7+2
x-7
+
x-6+2
x-9

∴原方程化為
1
x-10
-
1
x-6
=
1
x-7
+
1
x-9

1
x-10
-
1
x-9
=
1
x-7
-
1
x-6

1
(x-10)(x-9)
=
1
(x-7)(x-6)
∴x=8
點(diǎn)評(píng):本題主要考查用換元法解分式方程,難度較大.注意:換元法應(yīng)先將方程中多次出現(xiàn)的一個(gè)式子設(shè)為一個(gè)字母,然后得到一個(gè)新的方程,然后解出,反代入原式即可求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

下列方程的解分別是:
(1)x3-3x2+2x=0
 

(2)x4-5x2+4=0
 

(3)(x2-3x)2-2(x2-3x)-8=0
 

(4)(x2-5x-6)(x2-5x+11)=18
 

(5)(x+1)(x+2)(x-3)(x-4)=36
 

(6)(x+1)(x-1)=1
 

(7)x2-3|x|+2=0
 

(8)(x+1)(x-1)=x+1
 

(9)x2-3|x|+2=0
 

(10)x4+2x3+5x2+4x-12=0
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

下列方程的解分別是:
(1)x3-3x2+2x=0______.
(2)x4-5x2+4=0______.
(3)(x2-3x)2-2(x2-3x)-8=0______.
(4)(x2-5x-6)(x2-5x+11)=18______.
(5)(x+1)(x+2)(x-3)(x-4)=36______.
(6)(x+1)(x-1)=1______.
(7)x2-3|x|+2=0______.
(8)(x+1)(x-1)=x+1______.
(9)x2-3|x|+2=0______.
(10)x4+2x3+5x2+4x-12=0______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

下列方程的解分別是:
(1)數(shù)學(xué)公式______.
(2)數(shù)學(xué)公式______.
(3)數(shù)學(xué)公式______.
(4)x2+2x-數(shù)學(xué)公式=2______.
(5)數(shù)學(xué)公式______.
(6)數(shù)學(xué)公式______.
(7)數(shù)學(xué)公式______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初三奧賽訓(xùn)練題05:可化為一元二次方程的方程(組)(解析版) 題型:填空題

下列方程的解分別是:
(1)x3-3x2+2x=0   
(2)x4-5x2+4=0   
(3)(x2-3x)2-2(x2-3x)-8=0   
(4)(x2-5x-6)(x2-5x+11)=18   
(5)(x+1)(x+2)(x-3)(x-4)=36   
(6)(x+1)(x-1)=1   
(7)x2-3|x|+2=0   
(8)(x+1)(x-1)=x+1   
(9)x2-3|x|+2=0   
(10)x4+2x3+5x2+4x-12=0   

查看答案和解析>>

同步練習(xí)冊(cè)答案