如圖Rt△ABC中,∠A=30°,AB+BC=12 cm,則AB=    cm.
【答案】分析:此題考查了直角三角形的性質(zhì)、勾股定理,利用直角三角形的性質(zhì)和勾股定理求解.
解答:解:∵Rt△ABC中,∠A=30°,
∴BC=AB.
設(shè)AB=xcm,
則有BC=(12-x)cm,AB=2xcm
∵AB2=AC2+BC2
∴AB=8cm.
點(diǎn)評:熟記30°角所對的直角邊是斜邊的一半,解題時還要注意方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖Rt△ABC中,AB=BC=4,D為BC的中點(diǎn),在AC邊上存在一點(diǎn)E,連接ED,EB,則△BDE周長的最小值為( 。
A、2
5
B、2
3
C、2
5
+2
D、2
3
+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖Rt△ABC中,∠C=90°,AC=8,BC=6,CD為AB邊上的中線,點(diǎn)G是重心,則DG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,點(diǎn)P從B出發(fā),以1cm/s的速度向C運(yùn)動,同時點(diǎn)Q從C出發(fā),以1cm/s的速度向A運(yùn)動,問幾秒時PQ的長為2
5
cm?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•松北區(qū)三模)已知:如圖Rt△ABC中,∠C=90°,CD是∠ACB的平分線,點(diǎn)M在線段AC上,點(diǎn)N在線段CD上.∠MND=∠ADN,NE∥BC,交BD于點(diǎn)E.
(1)(如圖1)當(dāng)點(diǎn)M和點(diǎn)A重合時,求證:AN=BE;
(2)(如圖2)當(dāng)MN:AD=2:3時,MC=NE,AM=2,延長MN交BC于點(diǎn)F,將線段BF以F為中心順時針旋轉(zhuǎn),點(diǎn)B落在點(diǎn)P處,求出P點(diǎn)到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖Rt△ABC中,∠C=Rt∠,AB=5,BC=4.
(1)求AC的長度.
(2)有一動點(diǎn)P從點(diǎn)C開始沿C→B→A方向以1cm∕s的速度運(yùn)動,到達(dá)點(diǎn)A后停止運(yùn)動,設(shè)運(yùn)動時間為t秒.求:
①當(dāng)t為幾秒時,AP平分∠CAB.
②當(dāng)t為幾秒時,△ACP是等腰三角形(直接寫出答案).

查看答案和解析>>

同步練習(xí)冊答案