【題目】如圖,已知拋物線的方程C1m>0與x軸交于點(diǎn)B、C,與y軸交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè)

1若拋物線C1過點(diǎn)M2, 2,求實(shí)數(shù)m的值;

21的條件下,在拋物線的對(duì)稱軸上找一點(diǎn)H,使得BH+EH最小,求出點(diǎn)H的坐標(biāo);

3在第四象限內(nèi),拋物線C1上是否存在點(diǎn)F,使得以點(diǎn)B、C、F為頂點(diǎn)的三角形與BCE相似?若存在,求m的值;若不存在,請(qǐng)說明理由

【答案】14;2)(1,;3存在,m=

【解析】

試題分析1將點(diǎn)2,2的坐標(biāo)代入拋物線解析式,即可求得m的值;2根據(jù)軸對(duì)稱以及兩點(diǎn)之間線段最短的性質(zhì),可知點(diǎn)B、C關(guān)于對(duì)稱軸x=1對(duì)稱,連接EC與對(duì)稱軸的交點(diǎn)即為所求的H點(diǎn),如答圖2所示;3本問需分兩種情況進(jìn)行討論當(dāng)BEC∽△BCF時(shí),如答圖3所示此時(shí)可求得m=2+2;當(dāng)BEC∽△FCB時(shí),如答圖4所示此時(shí)可以得到矛盾的等式,故此種情形不存在

試題解析:(1M2,2代入,得解得m4;

2如圖2,拋物線的對(duì)稱軸是直線x1,當(dāng)H落在線段EC上時(shí),BHEH最小,設(shè)對(duì)稱軸與x軸的交點(diǎn)為P,那么因此解得所以點(diǎn)H的坐標(biāo)為1,;

3如圖3,過點(diǎn)BEC的平行線交拋物線于F,過點(diǎn)FFF′⊥x軸于F由于BCEFBC,所以當(dāng),即時(shí),BCE∽△FBC設(shè)點(diǎn)F的坐標(biāo)為,由,得解得xm2所以Fm2, 0,得所以,得整理,得016此方程無解

如圖4,作CBF45°交拋物線于F,過點(diǎn)FFF′⊥x軸于F,由于EBCCBF,所以,即時(shí),BCE∽△BFCRtBFF中,由FFBF,得解得x2m所以F所以BF2m2,,得解得綜合、,符合題意的m=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于受到手機(jī)更新?lián)Q代的影響,某手機(jī)店經(jīng)銷的甲品牌手機(jī)四月份售價(jià)比三月份每臺(tái)降價(jià)500元.如果賣出相同數(shù)量的甲品牌手機(jī),那么三月份銷售額為9萬元,四月份銷售額只有8萬元.

1)四月份甲品牌手機(jī)每臺(tái)售價(jià)為多少元?

2)為了提高利潤(rùn),該店計(jì)劃五月份購(gòu)進(jìn)甲品牌及乙品牌手機(jī)銷售,已知甲每臺(tái)進(jìn)價(jià)為3500元,乙每臺(tái)進(jìn)價(jià)為4000元,預(yù)算用不多于7.6萬元且不少于7.5萬元的資金購(gòu)進(jìn)這兩種手機(jī)共20臺(tái),問按此預(yù)算要求,可以有幾種進(jìn)貨方案,請(qǐng)寫出所有進(jìn)貨方案?

3)該店計(jì)劃五月在銷售甲品牌手機(jī)時(shí),在四月份售價(jià)基礎(chǔ)上每售出一臺(tái)甲品牌手機(jī)再返還顧客現(xiàn)金元,而乙品牌手機(jī)按銷售價(jià)4400元銷售,如要使(2)中所有方案獲利相同,應(yīng)取何值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C、D是半圓O上的三等分點(diǎn),直徑AB=4,連接AD、AC,DE⊥AB,垂足為E,DE交AC于點(diǎn)F.

(1)求∠AFE的度數(shù);

(3)求陰影部分的面積(結(jié)果保留π和根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,設(shè)D為銳角△ABC內(nèi)一點(diǎn),∠ADB=∠ACB+90°.

(1)求證:∠CAD+∠CBD=90°;

(2)如圖2,過點(diǎn)BBE⊥BD,BE=BD,連接EC,若ACBD=ADBC,

求證:△ACD∽△BCE;

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx過點(diǎn)B(1,﹣3),對(duì)稱軸是直線x=2,且拋物線與x軸的正半軸交于點(diǎn)A.

(1)求拋物線的解析式,并根據(jù)圖象直接寫出當(dāng)y≤0時(shí),自變量x的取值范圖;

(2)在第二象限內(nèi)的拋物線上有一點(diǎn)P,當(dāng)PABA時(shí),求PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在BC、CD上,△AEF是等邊三角形,連接ACEFG,下列結(jié)論:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤SCEF=2SABE.其中正確結(jié)論有____.(填序號(hào)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菜農(nóng)李偉種植的某蔬菜計(jì)劃以每千克元的單價(jià)對(duì)外批發(fā)銷售,由于部分菜農(nóng)盲目擴(kuò)大種植,造成該蔬菜滯銷.李偉為了加快銷售,減少損失,對(duì)價(jià)格經(jīng)過兩次下調(diào)后,以每千克元的單價(jià)對(duì)外批發(fā)銷售.

求平均每次下調(diào)的百分率;

小華準(zhǔn)備到李偉處購(gòu)買噸該蔬菜,因數(shù)量多,李偉決定再給予兩種優(yōu)惠方案以供選擇:

方案一:打九折銷售;

方案二:不打折,每噸優(yōu)惠現(xiàn)金元.

試問小華選擇哪種方案更優(yōu)惠,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙中(小正方形的邊長(zhǎng)為1)ABC的三個(gè)頂點(diǎn)均為格點(diǎn),將ABC沿x軸向左平移5個(gè)單位長(zhǎng)度,根據(jù)所給的直角坐標(biāo)系(O是坐標(biāo)原點(diǎn)),解答下列問題:

1)畫出平移后的ABC,并直接寫出點(diǎn)A、BC的坐標(biāo);

2)求在平移過程中線段AB掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ABC=90°,以AB為直徑作⊙O,點(diǎn)D為⊙O上一點(diǎn),且CD=CB、連接DO并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)E.

(1)判斷直線CD與⊙O的位置關(guān)系,并說明理由;

(2)若BE=4,DE=8,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案