若正六邊形ABCDEF繞著中心O旋轉(zhuǎn)角α得到的圖形與原來(lái)的圖形重合,則α最小值為    度.
【答案】分析:根據(jù)正六邊形的中心角是60°解答.
解答:解:∵正六邊形的中心角為360°÷6=60°,
∴正六邊形ABCDEF繞著中心O旋轉(zhuǎn)60°的整數(shù)倍得到的圖形與原來(lái)的圖形重合,
∴旋轉(zhuǎn)角α的最小值為60°.
故答案為:60.
點(diǎn)評(píng):本題考查旋轉(zhuǎn)對(duì)稱圖形的概念:把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對(duì)稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對(duì)稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•婺城區(qū)一模)某學(xué)習(xí)小組在探索“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”時(shí),有如下探討:

甲同學(xué):我發(fā)現(xiàn)這種多邊形不一定是正多邊形.如圓內(nèi)接矩形不一定是正方形.
乙同學(xué):我知道,邊數(shù)為3時(shí),它是正三角形;我想,邊數(shù)為5時(shí),它可能也是正五邊形…
丙同學(xué):我發(fā)現(xiàn)邊數(shù)為6時(shí),它也不一定是正六邊形.如圖2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,這樣構(gòu)造的六邊形ADBECF不是正六邊形.
(1)如圖1,若圓內(nèi)接五邊形ABCDE的各內(nèi)角均相等,則∠ABC=
108°
108°
,請(qǐng)簡(jiǎn)要說(shuō)明圓內(nèi)接五邊形ABCDE為正五邊形的理由.
(2)如圖2,請(qǐng)證明丙同學(xué)構(gòu)造的六邊形各內(nèi)角相等.
(3)根據(jù)以上探索過(guò)程,就問(wèn)題“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”的結(jié)論與“邊數(shù)n(n≥3,n為整數(shù))”的關(guān)系,提出你的猜想(不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某學(xué)習(xí)小組在探索“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”時(shí),有如下探討:

甲同學(xué):我發(fā)現(xiàn)這種多邊形不一定是正多邊形.如圓內(nèi)接矩形不一定是正方形.
乙同學(xué):我知道,邊數(shù)為3時(shí),它是正三角形;我想,邊數(shù)為5時(shí),它可能也是正五邊形…
丙同學(xué):我發(fā)現(xiàn)邊數(shù)為6時(shí),它也不一定是正六邊形.如圖2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,這樣構(gòu)造的六邊形ADBECF不是正六邊形.
(1)如圖1,若圓內(nèi)接五邊形ABCDE的各內(nèi)角均相等,則∠ABC=______,請(qǐng)簡(jiǎn)要說(shuō)明圓內(nèi)接五邊形ABCDE為正五邊形的理由.
(2)如圖2,請(qǐng)證明丙同學(xué)構(gòu)造的六邊形各內(nèi)角相等.
(3)根據(jù)以上探索過(guò)程,就問(wèn)題“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”的結(jié)論與“邊數(shù)n(n≥3,n為整數(shù))”的關(guān)系,提出你的猜想(不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年浙江省金華市婺城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

某學(xué)習(xí)小組在探索“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”時(shí),有如下探討:

甲同學(xué):我發(fā)現(xiàn)這種多邊形不一定是正多邊形.如圓內(nèi)接矩形不一定是正方形.
乙同學(xué):我知道,邊數(shù)為3時(shí),它是正三角形;我想,邊數(shù)為5時(shí),它可能也是正五邊形…
丙同學(xué):我發(fā)現(xiàn)邊數(shù)為6時(shí),它也不一定是正六邊形.如圖2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,這樣構(gòu)造的六邊形ADBECF不是正六邊形.
(1)如圖1,若圓內(nèi)接五邊形ABCDE的各內(nèi)角均相等,則∠ABC=______,請(qǐng)簡(jiǎn)要說(shuō)明圓內(nèi)接五邊形ABCDE為正五邊形的理由.
(2)如圖2,請(qǐng)證明丙同學(xué)構(gòu)造的六邊形各內(nèi)角相等.
(3)根據(jù)以上探索過(guò)程,就問(wèn)題“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”的結(jié)論與“邊數(shù)n(n≥3,n為整數(shù))”的關(guān)系,提出你的猜想(不需證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案