【題目】已知:在平面直角坐標(biāo)系中點(diǎn)、是某函數(shù)圖象上任意兩點(diǎn).將函數(shù)圖象中的部分沿直線作軸對(duì)稱,的部分沿直線作軸對(duì)稱,與原函數(shù)圖象中的部分組成了個(gè)新函數(shù)的圖象,稱這個(gè)新函數(shù)為原函數(shù)關(guān)于點(diǎn)的“雙對(duì)稱函數(shù)”.

例如:如圖①,點(diǎn)、是一次函數(shù)圖象上的兩個(gè)點(diǎn),則函數(shù)關(guān)于點(diǎn)的“雙對(duì)稱函數(shù)”的圖象如圖②所示.

圖① 圖②

1)點(diǎn)、是函數(shù)圖象上的兩點(diǎn),關(guān)于點(diǎn)、的“雙對(duì)稱函數(shù)”的圖象記作.若是中心對(duì)稱圖形,直接寫出的值.

2)點(diǎn)、是二次函數(shù)圖象上的兩點(diǎn),該二次函數(shù)關(guān)于點(diǎn)、的“雙對(duì)稱函數(shù)”記作

①求兩點(diǎn)的坐標(biāo)(用含的代數(shù)式表示).

②當(dāng)時(shí),求出函數(shù)的解析式;

③若時(shí),函數(shù)的最小值為,求時(shí),的取值范圍.

【答案】1;(2)①,;②;③

【解析】

1)根據(jù)圖像關(guān)于原點(diǎn)對(duì)稱可得,點(diǎn)A、B兩點(diǎn)一定關(guān)于原點(diǎn)對(duì)稱,可得t的值;

2直接將P、Q橫坐標(biāo)代入拋物線,可求得點(diǎn)P、Q的縱坐標(biāo);

根據(jù)“雙對(duì)稱函數(shù)”的定義,函數(shù)在點(diǎn)PQ處翻折,分3段表示函數(shù)解析式即可;

存在3種情況,一種是t≤-1時(shí),一種是-1t0時(shí),還有一種是t≥0時(shí),分別討論最小值可求得取值范圍.

1)∵A、B在反比例函數(shù)

A(t),B(t+3)

因?yàn)楹瘮?shù)關(guān)于原點(diǎn)對(duì)稱,則AB兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱

t+t+3=0

解得:

2①∵

,

當(dāng)時(shí),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

原二次函數(shù)的解析式為

當(dāng)x時(shí),函數(shù)沿y=翻折

得到:

當(dāng)時(shí),函數(shù)不變,即為:

當(dāng)時(shí),函數(shù)沿y=翻折

得到:

故可求

當(dāng)t0時(shí)

同理,可求得

其中,t≤1時(shí),圖形如下

則點(diǎn)Q始終是函數(shù)在-1≤x1的最低點(diǎn)

,

解得:t

t

當(dāng)-1t0時(shí),則在x=1時(shí)取得最小值

代入得:y=

2≤≤-1

解得:t≤

t≤

當(dāng)t≥0時(shí),同理,直接解不等式:

2≤≤-1

解得:

∴綜上得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:,善于思考的小明進(jìn)行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:

當(dāng)均為正整數(shù)時(shí),若,用含m、n的式子分別表示,得   ,   

2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2;

3)若,且均為正整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,四邊形ABCD中,ADBC,ABBC4,∠B60°,∠C105°,點(diǎn)EBC的中點(diǎn),以CE為弦作圓,設(shè)該圓與四邊形ABCD的一邊的交點(diǎn)為P,若∠CPE30°,則EP的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)C是半徑為1的半圓弧的一個(gè)三等分點(diǎn),分別以弦為直徑向外側(cè)作2個(gè)半圓,點(diǎn)DE也分別是2半圓弧的三等分點(diǎn),再分別以弦、為直徑向外側(cè)作4個(gè)半圓.則圖中陰影部分(4個(gè)新月牙形)的面積和是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形,點(diǎn)上的一點(diǎn),連結(jié),平分,交于點(diǎn),且點(diǎn)的中點(diǎn),連結(jié),已知,,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,有4張除了正面圖案不同,其余都相同的卡片,將這4張卡片背面朝上混勻.

1)若淇淇從中抽一張卡片,求抽到的卡片上所示的立體圖形的主視圖為矩形的概率;

2)若嘉嘉先從中隨機(jī)抽出一張后放回并混勻,淇淇再隨機(jī)抽出一張,請(qǐng)用列表法或畫樹(shù)狀圖求兩人抽到的卡片上所示的立體圖形的主視圖都是矩形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小玲和弟弟小東分別從家和圖書館同時(shí)出發(fā),沿同一條路相向而行,小玲開(kāi)始跑步中途改為步行,到達(dá)圖書館恰好用30min.小東騎自行車以300m/min的速度直接回家,兩人離家的路程y(m)與各自離開(kāi)出發(fā)地的時(shí)間x(min)之間的函數(shù)圖象如圖所示

(1)家與圖書館之間的路程為多少m,小玲步行的速度為多少m/min;

(2)求小東離家的路程y關(guān)于x的函數(shù)解析式,并寫出自變量的取值范圍;

(3)求兩人相遇的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),連接,已知點(diǎn)A、C的坐標(biāo)為、

1)求拋物線的表達(dá)式;

2)點(diǎn)P是線段下方拋物線上的一動(dòng)點(diǎn),如果在x軸上存在點(diǎn)Q,使得以點(diǎn)B、CP、Q為頂點(diǎn)的四邊形為平行四邊形,求點(diǎn)Q的坐標(biāo);

3)如圖2,若點(diǎn)M內(nèi)一動(dòng)點(diǎn),且滿足,過(guò)點(diǎn)M,垂足為N,設(shè)的內(nèi)心為I,試求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某初中學(xué)校餐廳為了解學(xué)生對(duì)早餐的要求,隨即抽樣調(diào)查了該校的部分學(xué)生,并根據(jù)其中兩個(gè)單選問(wèn)題的調(diào)查結(jié)果,繪制了如下尚不完整的統(tǒng)計(jì)圖表.

學(xué)生能接受的早餐價(jià)格統(tǒng)計(jì)表

價(jià)格分組(單位:元)

頻數(shù)

頻率

0x2

60

0.15

2x4

180

c

4x6

92

0.23

6x8

a

0.12

x8

20

0.05

合計(jì)

b

1

根據(jù)以上信息解答下列問(wèn)題:

1)統(tǒng)計(jì)表中,a  ,b  c 

2)扇形統(tǒng)計(jì)圖中,m的值為  ,“甜”所對(duì)應(yīng)的圓心角的度數(shù)是 

3)該餐廳計(jì)劃每天提供早餐2000份,其中咸味大約準(zhǔn)備多少份較好?

查看答案和解析>>

同步練習(xí)冊(cè)答案