(2010•成都)在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-3,0),若將經(jīng)過A、C兩點(diǎn)的直線y=kx+b沿y軸向下平移3個(gè)單位后恰好經(jīng)過原點(diǎn),且拋物線的對(duì)稱軸是直線x=-2.
(1)求直線AC及拋物線的函數(shù)表達(dá)式;
(2)如果P是線段AC上一點(diǎn),設(shè)△ABP、△BPC的面積分別為S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求點(diǎn)P的坐標(biāo);
(3)設(shè)⊙Q的半徑為1,圓心Q在拋物線上運(yùn)動(dòng),則在運(yùn)動(dòng)過程中是否存在⊙Q與坐標(biāo)軸相切的情況?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說明理由.并探究:若設(shè)⊙Q的半徑為r,圓心Q在拋物線上運(yùn)動(dòng),則當(dāng)r取何值時(shí),⊙Q與兩坐軸同時(shí)相切.

【答案】分析:(1)根據(jù)“過A、C兩點(diǎn)的直線y=kx+b沿y軸向下平移3個(gè)單位后恰好經(jīng)過原點(diǎn)”,即可得到c-3=0,由此可得到C點(diǎn)的坐標(biāo),根據(jù)A、C的坐標(biāo)即可求出直線AC的解析式;根據(jù)拋物線的對(duì)稱軸及A、C的坐標(biāo),即可用待定系數(shù)法求出拋物線的解析式;
(2)由于△ABP和△BPC等高不等底,那么它們的面積比等于底邊的比,由此可求出AP、PC的比例關(guān)系,過P作x軸的垂線,通過構(gòu)建的相似三角形的相似比即可求出P點(diǎn)的坐標(biāo);
(3)①此題要分成兩種情況討論:
一、⊙Q與x軸相切,可設(shè)出Q點(diǎn)的橫坐標(biāo),根據(jù)拋物線的解析式表示出它的縱坐標(biāo),若⊙Q與x軸相切,那么Q點(diǎn)的縱坐標(biāo)的絕對(duì)值即為⊙Q的半徑1,由此可列方程求出Q點(diǎn)的坐標(biāo);
二、⊙Q與y軸相切,方法同一;
②若⊙Q與x、y軸都相切,那么Q點(diǎn)的橫、縱坐標(biāo)的絕對(duì)值相等,可據(jù)此列方程求出Q點(diǎn)的坐標(biāo),進(jìn)而可得到⊙Q的半徑.
解答:解:(1)∵y=kx+m沿y軸向下平移3個(gè)單位后恰好經(jīng)過原點(diǎn),
∴m=3,C(0,3).
將A(-3,0)代入y=kx+3,
得-3k+3=0.
解得k=1.
∴直線AC的函數(shù)表達(dá)式為y=x+3.
∵拋物線的對(duì)稱軸是直線x=-2
,
解得;
∴拋物線的函數(shù)表達(dá)式為y=x2+4x+3;

(2)如圖,過點(diǎn)B作BD⊥AC于點(diǎn)D.
∵S△ABP:S△BPC=2:3,
AP•BD:PC•BD=2:3
∴AP:PC=2:3.
過點(diǎn)P作PE⊥x軸于點(diǎn)E,
∵PE∥CO,
∴△APE∽△ACO,
==
∴PE=OC=,
,
解得
∴點(diǎn)P的坐標(biāo)為;

(3)(Ⅰ)假設(shè)⊙Q在運(yùn)動(dòng)過程中,存在⊙Q與坐標(biāo)軸相切的情況.
設(shè)點(diǎn)Q的坐標(biāo)為(x,y).
①當(dāng)⊙Q與y軸相切時(shí),有|x|=1,即x=±1.
當(dāng)x=-1時(shí),得y=(-1)2+4×(-1)+3=0,∴Q1(-1,0)
當(dāng)x=1時(shí),得y=12+4×1+3=8,∴Q2(1,8)
②當(dāng)⊙Q與x軸相切時(shí),有|y|=1,即y=±1
當(dāng)y=-1時(shí),得-1=x2+4x+3,
即x2+4x+4=0,解得x=-2,
∴Q3(-2,-1)
當(dāng)y=1時(shí),得1=x2+4x+3,
即x2+4x+2=0,解得,
,
綜上所述,存在符合條件的⊙Q,其圓心Q的坐標(biāo)分別為Q1(-1,0),Q2(1,8),Q3(-2,-1),,
(Ⅱ)設(shè)點(diǎn)Q的坐標(biāo)為(x,y).
當(dāng)⊙Q與兩坐標(biāo)軸同時(shí)相切時(shí),有y=±x
由y=x,得x2+4x+3=x,即x2+3x+3=0,
∵△=32-4×1×=-3<0
∴此方程無解.
由y=-x,得x2+4x+3=-x,
即x2+5x+3=0,
解得
∴當(dāng)⊙Q的半徑時(shí),⊙Q與兩坐標(biāo)軸同時(shí)相切.(12分)
點(diǎn)評(píng):此題是二次函數(shù)的綜合題,主要考查了一次函數(shù)、二次函數(shù)解析式的確定,三角形面積的求法,相似三角形的判定和性質(zhì)以及直線與圓的位置關(guān)系等知識(shí);需要注意的是(3)①所求的是⊙Q與坐標(biāo)軸相切,并沒有說明是x軸,還是y軸,因此要將所有的情況都考慮到,以免漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2010•成都)在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-3,0),若將經(jīng)過A、C兩點(diǎn)的直線y=kx+b沿y軸向下平移3個(gè)單位后恰好經(jīng)過原點(diǎn),且拋物線的對(duì)稱軸是直線x=-2.
(1)求直線AC及拋物線的函數(shù)表達(dá)式;
(2)如果P是線段AC上一點(diǎn),設(shè)△ABP、△BPC的面積分別為S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求點(diǎn)P的坐標(biāo);
(3)設(shè)⊙Q的半徑為1,圓心Q在拋物線上運(yùn)動(dòng),則在運(yùn)動(dòng)過程中是否存在⊙Q與坐標(biāo)軸相切的情況?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說明理由.并探究:若設(shè)⊙Q的半徑為r,圓心Q在拋物線上運(yùn)動(dòng),則當(dāng)r取何值時(shí),⊙Q與兩坐軸同時(shí)相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2010•成都)如圖,已知反比例函數(shù)與一次函數(shù)y=x+b的圖象在第一象限相交于點(diǎn)A(1,-k+4).
(1)試確定這兩個(gè)函數(shù)的表達(dá)式;
(2)求出這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)B的坐標(biāo),并根據(jù)圖象寫出使反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(01)(解析版) 題型:填空題

(2010•成都)在平面直角坐標(biāo)系中,點(diǎn)A(2,-3)位于第    象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省成都市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•成都)在平面直角坐標(biāo)系中,點(diǎn)A(2,-3)位于第    象限.

查看答案和解析>>

同步練習(xí)冊(cè)答案