(2013•玉溪)如圖,在一塊菱形菜地ABCD中,對角線AC與BD相交于點(diǎn)O,若在菱形菜地內(nèi)均勻地撒上種子,則種子落在陰影部分的概率是( 。
分析:根據(jù)菱形的性質(zhì)對角線互相平分且垂直,進(jìn)而得出S△AOB=S△AOD=S△BOC=S△COD,即可得出種子落在陰影部分的概率.
解答:解:∵菱形菜地ABCD中,對角線AC與BD相交于點(diǎn)O,
∴BD⊥AC,BO=DO,AO=CO,
∴S△AOB=S△AOD=S△BOC=S△COD
∴在菱形菜地內(nèi)均勻地撒上種子,則種子落在陰影部分的概率是:
1
4

故選:D.
點(diǎn)評:此題主要考查了菱形的性質(zhì)以及幾何概率,根據(jù)題意得出S△AOB=S△AOD=S△BOC=S△COD是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉溪)如圖是每個面上都有一個漢字的正方體的一種平面展開圖,那么在原正方體中和“國”字相對的面是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉溪)如圖,點(diǎn)A、B、C、D都在方格紙的格點(diǎn)上,若△AOB繞點(diǎn)O按逆時針方向旋轉(zhuǎn)到△COD的位置,則旋轉(zhuǎn)的角度為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉溪)如圖,AB∥CD,∠BAF=115°,則∠ECF的度數(shù)為
65
65
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉溪)如圖,在?ABCD中,點(diǎn)E,F(xiàn)分別是邊AD,BC的中點(diǎn),求證:AF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉溪)如圖,頂點(diǎn)為A的拋物線y=a(x+2)2-4交x軸于點(diǎn)B(1,0),連接AB,過原點(diǎn)O作射線OM∥AB,過點(diǎn)A作AD∥x軸交OM于點(diǎn)D,點(diǎn)C為拋物線與x軸的另一個交點(diǎn),連接CD.
(1)求拋物線的解析式(關(guān)系式);
(2)求點(diǎn)A,B所在的直線的解析式(關(guān)系式);
(3)若動點(diǎn)P從點(diǎn)O出發(fā),以每秒1個單位長度的速度沿著射線OM運(yùn)動,設(shè)點(diǎn)P運(yùn)動的時間為t秒,問:當(dāng)t為何值時,四邊形ABOP分別為平行四邊形?等腰梯形?
(4)若動點(diǎn)P從點(diǎn)O出發(fā),以每秒1個單位長度的速度沿線段OD向點(diǎn)D運(yùn)動,同時動點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個單位長度的速度沿線段CO向點(diǎn)O運(yùn)動,當(dāng)其中一個點(diǎn)停止運(yùn)動時另一個點(diǎn)也隨之停止運(yùn)動.設(shè)它們的運(yùn)動時間為t秒,連接PQ.問:當(dāng)t為何值時,四邊形CDPQ的面積最?并求此時PQ的長.

查看答案和解析>>

同步練習(xí)冊答案