如圖,在平行四邊形ABCD中,E、F分別是邊AD、BC的中點(diǎn),AC分別交BE、DF于點(diǎn)M、N.給出下列結(jié)論:
①△ABM≌△CDN;②AM=AC;③DN=2NF;④S△AMB=S△ABC
其中正確的結(jié)論是    .(只填序號(hào))
【答案】分析:本題先結(jié)合平行四邊形性質(zhì),根據(jù)ASA得出△ABM≌△CDN,從而得出DN=BM,AM=CN;再由三角形中位線得出CN=MN,BM=DN=2NF,同時(shí)推翻AM=AC、S△AMB=S△ABC
解答:解:∵因?yàn)槠叫兴倪呅蜛BCD,
∴AD=BC,AB=CD,且AD∥BC AB∥CD∠BAE=∠DCF,
∵E、F分別是邊AD、BC的中點(diǎn),
∴AE=DE=BF=CF,
在△ABE和△CDF中
,
∴△ABE≌△CDF(SAS),
∴∠ABM=∠CDN,
∵AB∥CD,
∴∠BAM=∠DCN,
在△ABM和△CDN中
,
∴△ABM≌△CDN(ASA),∴①正確;
∴AM=CN,BM=DN,∠AMB=∠DNC=∠FNA,
∴NF∥BM,
∵F為BC的中點(diǎn),
∴NF為三角形BCM的中位線,
∴BM=DN=2NF(即③DN=2NF)CN=MN=AM,
∴②AM=AC和④S△AMB=S△ABC(不成立),
∴其中正確的結(jié)論是①③.
故答案為:①③.
點(diǎn)評(píng):本題考查的知識(shí)重點(diǎn)是全等三角形,另外也考查了平行四邊形和三角形的相關(guān)性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點(diǎn)O,則圖中共有
9
個(gè)平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點(diǎn)M是邊AD上一點(diǎn),且DM:AD=1:3.點(diǎn)E、F分別從A、C同時(shí)出發(fā),以1厘米/秒的速度分別沿AB、CB向點(diǎn)B運(yùn)動(dòng)(當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng)),EM、CD精英家教網(wǎng)的延長(zhǎng)線交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為x秒,線段PC的長(zhǎng)為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
AO=
3
,OB=
5
,則下列結(jié)論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長(zhǎng)為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊(cè)答案