(2012•天津)在開展“學雷鋒社會實踐”活動中,某校為了解全校1200名學生參加活動的情況,隨機調查了50名學生每人參加活動的次數(shù),并根據(jù)數(shù)據(jù)繪成條形統(tǒng)計圖如圖.
(Ⅰ)求這50個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅱ)根據(jù)樣本數(shù)據(jù),估算該校1200名學生共參加了多少次活動?
分析:(Ⅰ)根據(jù)加權平均數(shù)的公式可以計算出平均數(shù);根據(jù)眾數(shù)的定義:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),中位數(shù):將一組數(shù)據(jù)按照從小到大(或從大到。┑捻樞蚺帕校绻麛(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù),即可求出眾數(shù)與中位數(shù);
(Ⅱ)利用樣本估計總體的方法,用樣本中的平均數(shù)×1200即可.
解答:解:(Ⅰ)觀察條形統(tǒng)計圖,可知這組樣本數(shù)據(jù)的平均數(shù)是:
.
x
=
1×3+2×7+3×17+4×18+5×5
50
=3.3,
則這組樣本數(shù)據(jù)的平均數(shù)是3.3.
∵在這組樣本數(shù)據(jù)中,4出現(xiàn)了18次,出現(xiàn)的次數(shù)最多,
∴這組數(shù)據(jù)的眾數(shù)是4.
∵將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處在中間的兩個數(shù)都是3,
3+3
2
=3,
∴這組數(shù)據(jù)的中位數(shù)是3;

(Ⅱ)∵這組樣本數(shù)據(jù)的平均數(shù)是3.3,
∴估計全校1200人參加活動次數(shù)的總體平均數(shù)是3.3,
3.3×1200=3960.
∴該校學生共參加活動約為3960次.
點評:本題考查的是條形統(tǒng)計圖,平均數(shù),眾數(shù),中位數(shù),以及樣本估計總體.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息,掌握眾數(shù)、中位數(shù)的定義是解決問題的關鍵,條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•天津)某電視臺“走基層”欄目的一位記者乘汽車赴360km外的農村采訪,全程的前一部分為高速公路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時間x(單位:h)之間的關系如圖所示,則下列結論正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•天津)“三等分任意角”是數(shù)學史上一個著名問題.已知一個角∠MAN,設∠α=
13
∠MAN.
(Ⅰ)當∠MAN=69°時,∠α的大小為
23
23
(度);
(Ⅱ)如圖,將∠MAN放置在每個小正方形的邊長為1cm的網格中,角的一邊AM與水平方向的網格線平行,另一邊AN經過格點B,且AB=2.5cm.現(xiàn)要求只能使用帶刻度的直尺,請你在圖中作出∠α,并簡要說明做法(不要求證明)
如圖,讓直尺有刻度一邊過點A,設該邊與過點B的豎直方向的網格線交于點C,與過點B水平方向的網格線交于點D,保持直尺有刻度的一邊過點A,調整點C、D的位置,使CD=5cm,畫射線AD,此時∠MAD即為所求的∠α.
如圖,讓直尺有刻度一邊過點A,設該邊與過點B的豎直方向的網格線交于點C,與過點B水平方向的網格線交于點D,保持直尺有刻度的一邊過點A,調整點C、D的位置,使CD=5cm,畫射線AD,此時∠MAD即為所求的∠α.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•天津)已知反比例函數(shù)y=
k-1x
(k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點A(x1,y1)、B(x2,y2),當y1>y2時,試比較x1與x2的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•天津)已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經過點O、P折疊該紙片,得點B′和折痕OP.設BP=t.

(Ⅰ)如圖①,當∠BOP=30°時,求點P的坐標;
(Ⅱ)如圖②,經過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的條件下,當點C′恰好落在邊OA上時,求點P的坐標(直接寫出結果即可).

查看答案和解析>>

同步練習冊答案