如圖,Rt△ABC中,∠C=90°,BC=6,AC=8.點(diǎn)P,Q都是斜邊AB上的動點(diǎn),點(diǎn)P從B 向A運(yùn)動(不與點(diǎn)B重合),點(diǎn)Q從A向B運(yùn)動,BP=AQ.點(diǎn)D,E分別是點(diǎn)A,B以Q,P為對稱中心的對稱點(diǎn), HQ⊥AB于Q,交AC于點(diǎn)H.當(dāng)點(diǎn)E到達(dá)頂點(diǎn)A時,P,Q同時停止運(yùn)動.設(shè)BP的長為x,△HDE的面積為y.
(1)求證:△DHQ∽△ABC;
(2)求y關(guān)于x的函數(shù)解析式并求y的最大值;
(3)當(dāng)x為何值時,△HDE為等腰三角形?
(1)略
(2)
(3)當(dāng)x的值為時,△HDE是等腰三角形
解析:(14分)
(1)∵A、D關(guān)于點(diǎn)Q成中心對稱,HQ⊥AB,
∴=90°,HD=HA,
∴,…………………………………………………………………………3分
∴△DHQ∽△ABC. ……………………………………………………………………1分
(2)①如圖1,當(dāng)時,
ED=,QH=,
此時. …………………………………………3分
當(dāng)時,最大值.
②如圖2,當(dāng)時,
ED=,QH=,
此時. …………………………………………2分
當(dāng)時,最大值.
∴y與x之間的函數(shù)解析式為
y的最大值是.……………………………………………………………………1分
(3)①如圖1,當(dāng)時,
若DE=DH,∵DH=AH=, DE=,
∴=,.
顯然ED=EH,HD=HE不可能; ……………………………………………………1分
②如圖2,當(dāng)時,
若DE=DH,=,; …………………………………………1分
若HD=HE,此時點(diǎn)D,E分別與點(diǎn)B,A重合,; ………………………1分
若ED=EH,則△EDH∽△HDA,
∴,,. ……………………………………1分
∴當(dāng)x的值為時,△HDE是等腰三角形.
(其他解法相應(yīng)給分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com