如圖,在△ABC中,∠BAC=135°,AD⊥BC于D,且AB+BD=DC,那么∠C=________°.

15
分析:由AB+BD=DC,可以得到輔助線:在DC上截取DE=BD,連接AE;根據(jù)SAS證得△ADB≌△ADE,再利用全等三角形的對(duì)應(yīng)邊,對(duì)應(yīng)角相等,可得到∠B=∠AED,AE=AB;又由等量代換,證得△AEC是等腰三角形,利用等邊對(duì)等角,即可求得∠B與∠C的關(guān)系,由三角形的內(nèi)角和是180°,即可求得結(jié)果.
解答:解:在DC上截取DE=BD,連接AE,
∵AD⊥BC,
∴∠ADB=∠ADE=90°,
∵AD=AD,
∴△ADB≌△ADE,
∴∠B=∠AED,AE=AB,
∵AB+BD=DC,DE+EC=DC,
∴AE=AB=EC,
∴∠AEB=2∠EAC=2∠C,
∴∠B=2∠C,
∵∠BAC=135°,∠B+∠C+∠BAC=180°,
∴3∠C=45°,
∴∠C=15°.
故答案為:15.
點(diǎn)評(píng):此題考查了全等三角形的判定與性質(zhì),以及等腰三角形的性質(zhì).解此題的關(guān)鍵是找到輔助線的作法,解題時(shí)應(yīng)注意積累經(jīng)驗(yàn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案