已知⊙P的圓心坐標為(1.5,0),半徑為2.5,⊙P與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸的負半軸交于點D.
(1)求D點的坐標;
(2)求過A、B、D三點的拋物線的解析式;
(3)設(shè)平行于x軸的直線交此拋物線于E、F兩點,問:是否存在以線段EF為直徑的圓O'恰好與⊙P相外切?若存在,求出其半徑r及圓心O'的坐標;若不存在,請說明理由.
(1)由已知,得OA=1,OB=4,
∴OD2=OA•OB=1×4,OD=2
∴D點的坐標為(0,-2);

(2)設(shè)過A、B、D三點多拋物線解析式為y=ax2+bx+c,把A(-1,0)、B(0,-2)的坐標代入解析式,得:
a-b+c=0
16a+4b+c=0
c=-2

a=
1
2
b=
3
2
c=-2

∴過點A、B、D三點多拋物線的解析式為y=
1
2
x2-
3
2
x-2;

(3)存在.配方y(tǒng)=
1
2
x2-
3
2
x-2=
1
2
(x-
3
2
2-
25
8

拋物線的對稱軸為x=
3
2
,圓心O’應(yīng)在對稱軸上.分兩種情況:
①當以線段EF為直徑的圓O′在x軸上方時,F(xiàn)(
3
2
+r,
5
2
+r)在拋物線y=
1
2
x2-
3
2
x-2上,
5
2
+r=
1
2
3
2
+r)2-
3
2
3
2
+r)-2,
整理得4r2-8r-45=0,
解得r=
9
2
或r=-
5
2
(舍去)
∴半徑r=
9
2
.圓心O′(
3
2
,7);
②當以線段EF為直徑的圓O′在x軸下方時:F(
3
2
+r,-
5
2
-r)在拋物線y=
1
2
x2-
3
2
x-2上,
∴-
5
2
-r=
1
2
3
2
+r)2-
3
2
3
2
+r)-2,
整理得4r2+8r-5=0,
解得r=
1
2
或r=-
5
2
(舍去)
∴半徑r=
1
2
,圓心O′(
3
2
,-3
).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,OABC是邊長為1的正方形,OC與x軸正半軸的夾角為15°,點B在拋物線y=ax2(a<0)的圖象上,則a的值為( 。
A.-
2
3
B.-
2
3
C.-2D.-
1
2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,小李推鉛球,如果鉛球運行時離地面的高度y(米)關(guān)于水平距離x(米)的函數(shù)解析式y=-
1
8
x2+
1
2
x+
3
2
,那么鉛球運動過程中最高點離地面的距離為______米.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,拋物線y=x2+bx+c與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,點B的坐標為(3,0),將直線y=kx沿y軸向上平移3個單位長度后恰好經(jīng)過B,C兩點.
(1)求直線BC及拋物線的解析式;
(2)設(shè)拋物線的頂點為D,點P在拋物線的對稱軸上,且∠APD=∠ACB,求點P的坐標;
(3)連接CD,求∠OCA與∠OCD兩角和的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,已知直線y=
2
5
x+2與x軸交于點A,交y軸于C、拋物線y=ax2+4ax+b經(jīng)過A、C兩點,拋物線交x軸于另一點B.
(1)求拋物線的解析式;
(2)點Q在拋物線上,且有△AQC和△BQC面積相等,求點Q的坐標;
(3)如圖2,點P為△AOC外接圓上
ACO
的中點,直線PC交x軸于D,∠EDF=∠ACO.當∠EDF繞D旋轉(zhuǎn)時,DE交AC于M,DF交y軸負半軸于N、問CN-CM的值是否發(fā)生變化?若不變,求出其值;若變化,求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示是一個拋物線形橋拱的示意圖,在所給出的平面直角坐標系中,當水位在AB位置時,水面寬度為10m,此時水面到橋拱的距離是4m,則拋物線的函數(shù)關(guān)系式為( 。
A.y=
25
4
x2
B.y=-
25
4
x2
C.y=-
4
25
x2
D.y=
4
25
x2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,以點C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點.
(1)求出A,B兩點的坐標;
(2)有一開口向下的拋物線y=a(x-h)2+k經(jīng)過點A,B,且其頂點在⊙C上.試確定此拋物線的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,四邊形ABCD是等腰梯形,其中ADBC,AD=2,BC=4,AB=DC=2,點M從點B開始,以每秒1個單位的速度向點C運動;點N從點D開始,沿D→A→B方向,以每秒1個單位的速度向點B運動.若點M、N同時開始運動,其中一點到達終點,另一點也停止運動,運動時間為t(t>0).過點N作NP⊥BC與P,交BD于點Q.
(1)點D到BC的距離為______;
(2)求出t為何值時,QMAB;
(3)設(shè)△BMQ的面積為S,求S與t的函數(shù)關(guān)系式;
(4)求出t為何值時,△BMQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:在四邊形ABCD中,AB=1,E、F、G、H分別時AB、BC、CD、DA上的點,且AE=BF=CG=DH.設(shè)四邊形EFGH的面積為S,AE=x(0≤x≤1).
(1)如圖①,當四邊形ABCD為正方形時,
①求S關(guān)于x的函數(shù)解析式,并求S的最小值S0;
②在圖②中畫出①中函數(shù)的草圖,并估計S=0.6時x的近似值(精確到0.01);
(2)如圖③,當四邊形ABCD為菱形,且∠A=30°時,四邊形EFGH的面積是否存在最小值?若存在,求出最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案