)如圖,在等腰△ABC中,點(diǎn)D、E是BC邊上兩點(diǎn),且AD=AE.求證:BD=CE.

方法一:

證明:在等腰△ABC中,

∵AB=AC(已知),

∴∠B=∠C(等邊對(duì)等角),..............................1'

又∵AD=AE(已知),

∴∠ADE=∠AED(等邊對(duì)等角),..............................2'

∴∠ADB=∠AEC(等角的補(bǔ)角相等),..............................3'

在△ABD與△ACE中,

∴△ABD≌△ACE(AAS)..............................4'

∴BD=CE(全等三角形的對(duì)應(yīng)邊相等)..........................5'

方法二:

證明:作AH⊥BC于點(diǎn)H,.............................1'

∵AB=AC(已知)

∴H為BC中點(diǎn)(三線合一).........................2'

∴BH=CH..............................3'

又∵AD=AE(已知)

∴H為DE中點(diǎn)(三線合一)

∴DH=EH..............................4'

∴BD=CE(等量減等量差相等)..............................5'

其它方法酌情給分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)探索與創(chuàng)新:如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,E為CD中點(diǎn),AE與BC的延長(zhǎng)線交于F.
(1)判斷S△ABF和S梯形ABCD有何關(guān)系,并說明理由;
(2)判斷S△ABE和S梯形ABCD有何關(guān)系,并說明理由;
(3)上述結(jié)論對(duì)一般梯形是否成立?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AB∥CD,AD=BC,點(diǎn)E,F(xiàn)分別在AD,BC上,且DE=CF.
試說明:AF=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在等腰直角三角形ABC和DEC中,∠BCA=∠BCE=90°,點(diǎn)E在邊AB上,ED與AC交于點(diǎn)F,連接AD.
(1)求證:△BCE≌△ACD.
(2)求證:AB⊥AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2005•柳州)如圖,在等腰梯形ABCD中,AD=7,BC=15,∠B=60°,EF為中位線.求:
(1)EF的長(zhǎng)為
11
11

(2)AB的長(zhǎng)為
8
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在等腰△AB七中,AB=A七,BE⊥A七,垂足為E,則∠1與∠A的關(guān)系式為(  )
A.∠1=∠AB.∠1=
1
2
∠A
C.∠1=2∠AD.無(wú)法確定
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案