【題目】已知∠AOB=30°,其平分線是OD,自O點引射線OC,若∠AOC:∠COB=2:3,則∠COD=__________.
【答案】3°或75°
【解析】
由于自O點引射線OC位置沒有確定,需要分情況來求.由于∠AOC:∠COB=2:3,∠AOB=30°,可以求得∠AOC的度數(shù),OD是角平分線,可以求得∠AOD的度數(shù),∠COD=∠AOD-∠AOC或∠COD=∠AOD+∠AOC即可.
解:若OC在∠AOB內(nèi)部, 如圖1,∠AOC∶∠COB=2∶3,設(shè)∠AOC=2x,∠COB=3x
∵∠AOB=30°,
∴2x+3x=30°
解得x=6°
∴∠AOC=2x=2×6°=12°,∠COB=3x=3×6°=18°
∵OD平分∠AOB,∴∠AOD=15°
∴∠COD=∠AOD-∠AOC=15°-12°=3°
若OC在∠AOB外部,如圖2
∵∠AOC∶∠COB=2∶3,設(shè)∠AOC=2x,∠COB=3x
∵∠AOB=30°
3x-2x=30°
得x=30°
∴∠AOC=2x=2×30°=60°,∠COB=3x=3×30°=90°,
∵OD平分∠AOB,
∴∠AOD=15°
∴∠COD=∠AOC+∠AOD=60°+15°=75°,
故OC與∠AOB的平分線所成的角的度數(shù)為3°或75°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,折疊長方形一邊AD,點D落在BC邊的點F處,已知BC=10厘米,AB=8厘米,
(1)求BF與FC的長;
(2)求EC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某淘寶商家計劃平均每天銷售某品牌兒童滑板車100輛,但由于種種原因,實際每天的銷售量與計劃量相比有出入。下表是某周的銷售情況(超額記為正、不足記為負(fù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
與計劃量的差值 | +4 | -3 | -5 | +14 | -8 | +21 | -6 |
(1)根據(jù)記錄的數(shù)據(jù)可知該店前三天共銷售該品牌兒童滑板車______輛。
(2)根據(jù)記錄的數(shù)據(jù)可知銷售量最多的一天比銷售量最少的一天多銷售______輛。
(3)該店實行每日計件工資制,每銷售一輛車可得40元,若超額完成任務(wù),則超過部分每輛另獎15元;少銷售一輛扣20元,那么該店鋪的銷售人員這一周的工資總額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖1)按兩種不同的方式,不重疊地放在一個底面為長方形(一邊長為4)的盒子底部(如圖2、圖3),盒子底面未被卡片覆蓋的部分用陰影表示.已知陰影部分均為長方形,且圖2與圖3陰影部分周長之比為5:6,則盒子底部長方形的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】首條貫通絲綢之路經(jīng)濟(jì)帶的高鐵線﹣寶蘭客專進(jìn)入全線拉通試驗階段,寶蘭客專的通車對加快西北地區(qū)與“一帶一路”沿線國家和地區(qū)的經(jīng)貿(mào)合作、人文交流具有十分重要的意義.試運行期間,一列動車從西安開往西寧,一列普通列車從西寧開往西安,兩車同時出發(fā),設(shè)普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),圖中的折線表示y與x之間的函數(shù)關(guān)系,根據(jù)圖象進(jìn)行一下探究:
【信息讀取】
(1)西寧到西安兩地相距 千米,兩車出發(fā)后 小時相遇;
(2)普通列車到達(dá)終點共需 小時,普通列車的速度是 千米/小時.
【解決問題】
(3)求動車的速度;
(4)普通列車行駛t小時后,動車到達(dá)終點西寧,求此時普通列車還需行駛多少千米到達(dá)西安?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是2015年12月月歷.
(1)如圖,用一正方形框在表中任意框往4個數(shù),記左上角的一個數(shù)為x,則另三個數(shù)用含x的式子表示出來,從小到大依次是 , , .
(2)在表中框住四個數(shù)之和最小記為a1,和最大記為a2,則a1+a2= .
(3)當(dāng)(1)中被框住的4個數(shù)之和等于76時,x的值為多少?
(4)在(1)中能否框住這樣的4個數(shù),它們的和等于92?若能,則求出x的值;若不能,則說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在Rt△ABC中,∠C=90°,BC=6cm,AC=8 cm,AB=10 cm. 現(xiàn)有一動點P,從A點出發(fā),沿著三角形的邊AC-CB-BA運動,回到A點停止,速度為1 cm/s,設(shè)運動時間為t s.
(1)當(dāng)t=_______時,△ABC的周長被線段AP平分為相等的兩部分.
(2)當(dāng)t=_______時,△APC的面積等于△ABC面積的一半.
(3)還有一個△DEF,∠E=90°,如圖②所示,DE=4cm,DF=5cm,∠D=∠A. 在△ABC的邊上,若另外有一個動點Q,與P 同時從A點出發(fā),沿著邊AB-BC-CA運動,回到點A停止. 在兩點運動過程中某一時刻,恰好△APQ與△DEF全等,則點Q的運動速度 cm/s.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠BAC=120°,點 D 是 BC 上一點,BD 的垂直平分線交 AB 于點E,將△ACD 沿 AD 折疊,點 C 恰好與點 E 重合,則∠B 等于_______°;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是∠BAC的平分線,AD的垂直平分線交BC的延長線于點F.
(1)求證:∠FAD=∠FDA;
(2)若∠B=50°,求∠CAF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com