如下圖OA=OB=OC且∠ACB=30°,則∠AOB的大小是【   】

A.40°B.50°C.60°D.70°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀短文,再解答短文后面的問題.
規(guī)定了方向的線段稱為有向線段.比如,對于線段AB,規(guī)定以A為起點,B為終點,便可得到一條從A到B的有向線段.為強調(diào)其方向,我們在其終點B處畫上箭頭(如下圖-1).以A為起點,B為終點的有向線段記為
AB
(起點字母A寫在前面,終點字母B寫在后面).線段AB的長度叫做有向線AB的長度(或模),記為|
AB
|.顯然,有向線段
AB
和有向線段
BA
長度相同.方向不同,它們不是同一條有向線段.
對于同一平面內(nèi)的有向線段,我們可以在該平面建立直角坐標系進行研究(一般情況,直角坐標系的單位長度與有向線段的單位長度相同).比如,以坐標原點O(0,0)為起點,P(3,0)為終點的有向線段
OP
,其方向與x軸正方向相同,長度(或模)是|
OP
|=3.
問題:
(1)在如圖所示的平面直角坐標系中畫出
OA
有向線段,使得
OA
=3
2
OA
與x軸正半軸的夾角是45°,且與y軸的負半軸的夾角是45°;
(2)若有向線段
OB
的終點B的坐標為(3,
3
),試求出它的模及它與x軸正半軸的夾角;
(3)若點M、A、P在同一直線上,|
MA
|+|
AP
|=|
MP
|
成立嗎?試畫出示意圖加以說明.(示意圖可以不畫在平面直角坐標系中)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所知道的特殊四邊形中是勾股四邊形的兩種圖形的名稱
正方形
,
長方形

(2)如下圖(1),請你在圖中畫出以格點為頂點,OA、OB為勾股邊,且對角線相同的所有勾股四邊形OAMB.
(3)如圖(2),以△ABC邊AB作如圖正三角形ABD,∠CBE=60°,且BE=BC,連接DE、DC,∠DCB=30°.求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(建筑施工高處作業(yè)安全技術(shù)規(guī)范)(JGJ80-91)規(guī)定,折梯(即人字梯)使用時上部夾角以35°-45°為宜,鉸鏈必須牢固,并應(yīng)有可靠的拉撐措施.如下圖所示,小明想在人字梯的A、B處系上一根繩子確保用梯安全,他測得OA=OB=3米,在A、B處打結(jié)各需要0.5米的繩子,請你幫小明計算一下,他需要的繩子應(yīng)該在什么范圍內(nèi)?
(參考數(shù)據(jù):sin35°=0.57,cos35°=0.82,tan35°=0.70,sin45°=0.71,cos45°=0.71,tan45°=1)
(sin17.5°=0.30,cos17.5°=0.95,tan17.5°=0.32,sin22.5°=0.38,cos22.5°=0.92,tan22.5°=0.41)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(湖北鄂州卷)數(shù)學(xué)(解析版) 題型:選擇題

如下圖OA=OB=OC且∠ACB=30°,則∠AOB的大小是【    】

A.40°      B.50°      C.60°      D.70°

 

查看答案和解析>>

同步練習(xí)冊答案