22、如圖,已知直線l1∥l2,l3、l4和l1、l2分別交于點A、B、C、D,點P在直線l3或l4上且不與點A、B、C、D重合.記∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
(1)若點P在圖(1)位置時,求證:∠3=∠1+∠2;
(2)若點P在圖(2)位置時,請直接寫出∠1、∠2、∠3之間的關系;
(3)若點P在圖(3)位置時,寫出∠1、∠2、∠3之間的關系并給予證明;
(4)若點P在C、D兩點外側運動時,請直接寫出∠1、∠2、∠3之間的關系.

分析:此題四個小題的解題思路是一致的,過P作直線l1、l2的平行線,利用平行線的性質得到和∠1、∠2相等的角,然后結合這些等角和∠3的位置關系,來得出∠1、∠2、∠3的數(shù)量關系.
解答:解:(1)證明:過P作PQ∥l1∥l2
由兩直線平行,內錯角相等,可得:
∠1=∠QPE、∠2=∠QPF;
∵∠3=∠QPE+∠QPF,
∴∠3=∠1+∠2.

(2)∠3=∠2-∠1;
證明:過P作直線PQ∥l1∥l2
則:∠1=∠QPE、∠2=∠QPF;
∵∠3=∠QPF-∠QPE,
∴∠3=∠2-∠1.


(3)∠3=360°-∠1-∠2.
證明:過P作PQ∥l1∥l2;
同(1)可證得:∠3=∠CEP+∠DFP;
∵∠CEP+∠1=180°,∠DFP+∠2=180°,
∴∠CEP+∠DFP+∠1+∠2=360°,
即∠3=360°-∠1-∠2.

(4)過P作PQ∥l1∥l2;
①當P在C點上方時,
同(2)可證:∠3=∠DFP-∠CEP;
∵∠CEP+∠1=180°,∠DFP+∠2=180°,
∴∠DFP-∠CEP+∠2-∠1=0,
即∠3=∠1-∠2.
②當P在D點下方時,
∠3=∠2-∠1,解法同上.
綜上可知:當P在C點上方時,∠3=∠1-∠2,當P在D點下方時,∠3=∠2-∠1.
點評:此題主要考查的是平行線的性質,能夠正確的作出輔助線,是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

6、如圖,已知直線l1,l2,l3相交于點O,∠1=35°,∠2=25°,則∠3等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•郯城縣一模)如圖,已知直線l1∥l2∥l3∥l4,相鄰兩條平行直線間的距離都是1,如果正方形ABCD的四個頂點分別在四條直線上,則cosα=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•黔南州)如圖,已知直線l1∥l2,∠1=50°,那么∠2=
50°
50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:已知直線l1∥l2,且l3、l4和l1、l2分別交于點A、B和點C、D,點P在AB上,設∠ADP=∠1,∠DPC=∠2,∠BCP=∠3.
(1)探究∠1、∠2、∠3之間的關系,并說明你的結論的正確性.
(2)若點P在A、B兩點之間運動時(點P和A、B不重合),∠1、∠2、∠3 之間的關系
不會
不會
發(fā)生變化(填會或不會)
(3)如果點P在A、B兩點外側運動時,(點P和A、B不重合)
①當點P在射線AM上時,猜想∠1、∠2、∠3之間的關系為
∠2=∠3-∠1
∠2=∠3-∠1
;
②當點P在射線BN上時,猜想∠1、∠2、∠3之間的關系為
∠3=∠1-∠2
∠3=∠1-∠2
(不必證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點C和D,在直線l3上有點P(點P與點C、D不重合),點A在直線l1上,點B在直線l2上.
(1)如果點P在C、D之間運動時,試說明∠PAC+∠PBD=∠APB;
(2)如果點P在直線l1的上方運動時,試探索∠PAC,∠APB,∠PBD之間的關系又是如何?
(3)如果點P在直線l2的下方運動時,∠PAC,∠APB,∠PBD之間的關系又是如何?
∠PAC=∠PBD+∠APB
∠PAC=∠PBD+∠APB
(直接寫出結論)

查看答案和解析>>

同步練習冊答案