【題目】已知:∠AOB.

求作:A'O'B',使∠A'O′B'=∠AOB

(1)如圖1,以點(diǎn)O為圓心,任意長(zhǎng)為半徑畫弧,分別交OA,OB于點(diǎn)C、D;

(2)如圖2,畫一條射線O′A′,以點(diǎn)O′為圓心,OC長(zhǎng)為半徑間弧,交O′A′于點(diǎn)C′;

(3)以點(diǎn)C′為圓心,CD長(zhǎng)為半徑畫弧,與第2步中所而的弧交于點(diǎn)D′;

(4)過點(diǎn)D′畫射線O′B',則∠A'O'B'=∠AOB.

根據(jù)以上作圖步驟,請(qǐng)你證明∠A'O'B′=∠AOB.

【答案】證明見解析.

【解析】

由基本作圖得到OD=OC=O′D′=O′C′,CD=C′D′,則根據(jù)“SSS“可證明OCD≌△O′C′D′,然后利用全等三角形的性質(zhì)可得到∠A'O'B′=AOB.

由作法得OD=OC=O′D′=O′C′,CD=C′D′,

OCDO′C′D′

∴△OCD≌△O′C′D′,

∴∠COD=C′O′D′,

即∠A'O'B′=AOB.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市教育局為了解我市八年級(jí)學(xué)生參加社會(huì)實(shí)踐活動(dòng)情況,隨機(jī)抽查了某縣部分八年級(jí)學(xué)生第一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計(jì)圖,下面給出了兩幅不完整的統(tǒng)計(jì)圖(如圖)。

請(qǐng)根據(jù)圖中提供的信息,回答下列問題:

(1)______%,請(qǐng)補(bǔ)全條形圖.

(2)計(jì)算出“活動(dòng)時(shí)間為5天”的部分對(duì)應(yīng)的扇形圓心角.

(3)如果該縣共有八年級(jí)學(xué)生2000人,請(qǐng)你估計(jì)“活動(dòng)時(shí)間不少于7天”的學(xué)生人數(shù)大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2(2m1)xm240.

(1)當(dāng)m為何值時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根?

(2)若邊長(zhǎng)為5的菱形的兩條對(duì)角線的長(zhǎng)分別為方程兩根的2倍,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,厘米,厘米,點(diǎn)的中點(diǎn).

1)如果點(diǎn)P在線段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).

①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,是否全等,請(qǐng)說明理由;

②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等, 是否可能全等?若能,求出全等時(shí)點(diǎn)Q的運(yùn)動(dòng)速度和時(shí)間;若不能,請(qǐng)說明理由.

2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿三邊運(yùn)動(dòng),求經(jīng)過多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D,EBC邊上的兩點(diǎn),ADAE,BECD,∠1=∠2110°,∠BAE60°,則∠CAE的度數(shù)為(

A.10°B.20°

C.30°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以O(shè)為原點(diǎn)的直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(0,1),直線x=1交x軸于點(diǎn)B。P為線段AB上一動(dòng)點(diǎn),作直線PC⊥PO,交直線x=1于點(diǎn)C。過P點(diǎn)作直線MN平行于x軸,交y軸于點(diǎn)M,交直線x=1于點(diǎn)N。

(1)當(dāng)點(diǎn)C在第一象限時(shí),求證:△OPM≌△PCN;

(2)當(dāng)點(diǎn)C在第一象限時(shí),設(shè)AP長(zhǎng)為m,四邊形POBC的面積為S,請(qǐng)求出S與m間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;

(3)當(dāng)點(diǎn)P在線段AB上移動(dòng)時(shí),點(diǎn)C也隨之在直線x=1上移動(dòng),△PBC是否可能成為等腰三角形?如果可能,求出所有能使△PBC成為等腰直角三角形的點(diǎn)P的坐標(biāo);如果不可能,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,安全快捷、平穩(wěn)舒適的中國高鐵,為世界高速鐵路的發(fā)展樹立了新的標(biāo)桿,隨著中國特色社會(huì)主義進(jìn)入新時(shí)代,作為中國名片的高速鐵路也將踏上自己的新征程,這就意味著今后外出旅行的路程與時(shí)間將大大縮短,但也有不少游客根據(jù)自已的喜好依然選擇乘坐普通列車,已知從咸寧地到某地的普通列車行駛路程是520千米,是高鐵行駛路程的1.3倍,請(qǐng)完成以下問題:

(1)高鐵行駛的路程為_____千米.

(2)若高鐵的平均速度(千米/時(shí))是普通列車平均速度(千米/時(shí))2.5倍,且乘坐高鐵所需時(shí)間比乘坐普通列車所需時(shí)間縮短3小時(shí),求高鐵的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在2016年巴西里約奧運(yùn)會(huì)上,中國女排克服重重困難,憑借頑強(qiáng)的毅力和超強(qiáng)的實(shí)力先后戰(zhàn)勝了實(shí)力同樣超強(qiáng)的巴西隊(duì),荷蘭隊(duì)和塞爾維亞隊(duì),獲得了奧運(yùn)冠軍,為祖國和人民爭(zhēng)了光.

如圖,已知女排球場(chǎng)的長(zhǎng)度OD為18米,位于球場(chǎng)中線處的球網(wǎng)AB的高度為2.24米,一隊(duì)員站在點(diǎn)O處發(fā)球,排球從點(diǎn)O的正上方2米的C點(diǎn)向正前方飛去,排球的飛行路線是拋物線的一部分,當(dāng)排球運(yùn)行至離點(diǎn)O的水平距離OE為6米時(shí),到達(dá)最高點(diǎn)F,以O為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系.

(1)當(dāng)排球運(yùn)行的最大高度為2.8米時(shí),求排球飛行的高度y(單位:米)與水平距離x(單位:米)之間的函數(shù)關(guān)系式.

(2)在(1)的條件下,這次所發(fā)的球能夠過網(wǎng)嗎?如果能夠過網(wǎng),是否會(huì)出界?請(qǐng)說明理由.

(3)喜歡打排球的李明同學(xué)經(jīng)研究后發(fā)現(xiàn),發(fā)球要想過網(wǎng),球運(yùn)行的最大高度h(米)應(yīng)滿足h>2.32,但是他不知道如何確定h的取值范圍,使排球不會(huì)出界(排球壓線屬于沒出界),請(qǐng)你幫忙解決并指出使球既能過網(wǎng)又不會(huì)出界的h的取值范圍 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年高中一年級(jí)學(xué)生開始,湖南省全面啟動(dòng)高考綜合改革,學(xué)生學(xué)習(xí)完必修課程后,可以根據(jù)高校相關(guān)專業(yè)的選課要求和自身興趣、志向、優(yōu)勢(shì),從思想政治、歷史、地理、物理、化學(xué)、生物6個(gè)科目中,自主選擇3個(gè)科目參加等級(jí)考試.學(xué)生已選物理,還想從思想政治、歷史、地理3個(gè)文科科目中選1科,再從化學(xué)、生物2個(gè)理科科目中選1.若他選思想政治、歷史、地理的可能性相等,選化學(xué)、生物的可能性相等,則選修地理和生物的概率為___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案