如圖1,在邊長為5的正方形ABCD中,點E、F分別是BC、DC邊上的點,且AE⊥EF,BE=2.
(1)求EC:CF的值;
(2)延長EF交正方形外角平分線CP于點P(如圖2),試判斷AE與EP的大小關系,并說明理由;
(3)在圖2的AB邊上是否存在一點M,使得四邊形DMEP是平行四邊形?若存在,請給予證明;若不存在,請說明理由.
【答案】分析:(1)由同角的余角相等得到∠1=∠2,故有Rt△ABE∽Rt△ECF?AB:CE=BE:CF?EC:CF=AB:BE=5:2;
(2)在AB上取BH=BE,連接EH,根據(jù)已知及正方形的性質利用ASA判定△AHE≌△ECP,從而得到AE=EP;
(3)先證△DAM≌△ABE,繼而可得四邊形DMEP是平行四邊形.
解答:解:(1)如圖1.∵AE⊥EF,
∴∠2+∠3=90°,
∵四邊形ABCD為正方形,
∴∠B=∠C=90°,
∵∠1+∠3=90°,
∴∠1=∠2,
∴△ABE∽△ECF,
∴AB:CE=BE:CF,
∴EC:CF=AB:BE=5:2

(2)如圖2,在AB上取BG=BE,連接EG,
∵ABCD為正方形,
∴AB=BC,
∵BE=BG,
∴AG=EC,
在△AGE和△ECP中
,
∴△AGE≌△ECP(ASA),
∴AE=EP;

(3)存在.順次連接DMEP.
如圖3.
在AB取點M,使AM=BE,
∵AE⊥EF,
∴∠2+∠3=90°,
∵四邊形ABCD為正方形,∴∠B=∠BCD=90°,
∴∠1+∠3=90°,
∴∠1=∠2,
∵∠DAM=∠ABE=90°,DA=AB,

∴△DAM≌△ABE(SAS),
∴DM=AE,
∵AE=EP,
∴DM=PE,
∵∠1=∠5,∠1+∠4=90°,
∴∠4+∠5=90°,
∴DM⊥AE,
∴DM∥PE
∴四邊形DMEP是平行四邊形.
點評:本題中,要熟練掌握正方形的性質及三角形相似的判定和性質的綜合運用.
(1)中求線段的比,一般會與相似三角形掛勾;
(2)中增加了角平分線的相關性質,通過目測可猜想兩條線段相等,從而通過構造全等三角形的判定求解或是利用角平分線的性質定理求解;
(3)中則考查了平行四邊形的識別.
命題規(guī)律與趨勢:本題起點不難,采用低起點、寬入口、坡度緩、步步高、窄出口”的分層考查的特點,考查學生的綜合運用知識解決總理的能力.以正方形為依托,以點的變化形式綜合考查了三角形相似、三角形全等、角平分線性質、平行四邊形的識別等知識.圖中正確解讀信息、找到正確的思路是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

本題為選項做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計分.
精英家教網(wǎng)
甲:直線l:y=(m-3)x+n-2(m,n為常數(shù))的圖象如圖1所示,化簡:|m-n|-
n24n+4
-|m-1|
;
乙:已知:如圖2,在邊長為a的正方形ABCD中,M是邊AD的中點,能否在邊AB上找到點N(不含A、B),使得△MAN相似?若能,請給出證明;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在邊長為5的正方形ABCD中,點E、F分別是BC、DC邊上的點,且AE⊥EF,BE=2.
(1)求EC:CF的值;
(2)延長EF交正方形外角平分線CP于點P(如圖2),試判斷AE與EP的大小關系,并說明理由;
(3)若將“邊長為5的正方形”改為“BC長為m(m>2),AB長為n(n>2),的矩形”,其他條件不變,試判斷AE與EP的大小關系,并說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在邊長為a的正方形中,剪掉兩個長方形(a>b),把剪下的部分拼成一個矩形(如圖2),通過計算兩個圖形(陰影部分)的面積,可以驗證一個等式,則這個等式是
a2-b2=(a+b)(a-b)
a2-b2=(a+b)(a-b)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在邊長為a的正方形中剪去一個邊長為b的小正形(a>b),把剩下部分拼成一個梯形(如圖2),利用這兩幅圖形面積,可以驗證的乘法公式是
(a+b)(a-b)=a2-b2
(a+b)(a-b)=a2-b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在邊長為a的正方形中剪去一個邊長為b的小正形(a>b),把剩下部分拼成一個梯形(如圖2),利用這兩幅圖形面積,可以驗證的公式是( 。

查看答案和解析>>

同步練習冊答案