如圖四邊形ABCD中,AD=DC.∠DAB=∠ACB=90°,過點(diǎn)D作DF⊥AC,垂足為F.DF與AB相交于E.設(shè)AB=15,BC=9,P是射線DF上的動(dòng)點(diǎn).當(dāng)△BCP的周長(zhǎng)最小時(shí),DP的長(zhǎng)為


  1. A.
    12
  2. B.
    12.5
  3. C.
    13
  4. D.
    13.5
B
分析:先根據(jù)△ABC是直角三角形可求出AC的長(zhǎng),再根據(jù)AD=DC,DF⊥AC可求出AF=CF=AC,故點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)是A,故E點(diǎn)與P點(diǎn)重合時(shí)△BCP的周長(zhǎng)最小,再根據(jù)DE⊥AC,BC⊥AC可知,DE∥BC,由相似三角形的判定定理可知△AEF∽△ABC,利用相似三角形的對(duì)應(yīng)邊成比例可得出AE的長(zhǎng),同理,利用△AED∽△CBA即可求出DE的長(zhǎng).
解答:∵∠ACB=90°,AB=15,BC=9,
∴AC===12,
∵AD=DC,DF⊥AC,
∴AF=CF=AC=6,
∴點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)是A,故E點(diǎn)與P點(diǎn)重合時(shí)△BCP的周長(zhǎng)最小,
∴DP=DE,
∵DE⊥AC,BC⊥AC,
∴DE∥BC,
∴△AEF∽△ABC,
=,即=,解得AE=,
∵DE∥BC,
∴∠AED=∠ABC,
∵∠DAB=∠ACB=90°,
∴Rt△AED∽R(shí)t△CBA,
=,即=,解得DE==12.5,即DP=12.5.
故選B.
點(diǎn)評(píng):本題考查的是軸對(duì)稱-最短線路問題及相似三角形的判定與性質(zhì),根據(jù)軸對(duì)稱的性質(zhì)得出DE=DP是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖四邊形ABCD中,AD=DC.∠DAB=∠ACB=90°,過點(diǎn)D作DF⊥AC,垂足為F.DF與AB相交于E.設(shè)AB=15,BC=9,P是射線DF上的動(dòng)點(diǎn).當(dāng)△BCP的周長(zhǎng)最小時(shí),DP的長(zhǎng)為(  )
A、12B、12.5C、13D、13.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖四邊形ABCD中,∠B=90°,AB=4,BC=3,AD=13,CD=12,
(1)AC與DC什么樣的位置關(guān)系?請(qǐng)證明你的結(jié)論;
(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖四邊形ABCD中,∠A=60°,∠B=∠D=90°,CD=2,BC=11,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖四邊形ABCD中,AC平分∠BAD,CD∥AB,BC=6cm,∠BAD=30°,∠B=90°.則CD的長(zhǎng)為
12cm
12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖四邊形ABCD中,∠A=90°,AB=4,AD=3,CD=13,BC=12,求:四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案