【題目】近幾年來全國各省市市政府民生實事之一的公共自行車建設(shè)工作已基本完成,網(wǎng)上資料顯示呼和浩特市某部門對14年4月份中的7天進(jìn)行了公共自行車日租車輛的統(tǒng)計,結(jié)果如圖:
(1)求這7天日租車量的眾數(shù)、中位數(shù)和平均數(shù);
(2)用(1)中的平均數(shù)估計4月份(30天)該市共租車多少萬車次;
(3)資料顯示,呼市政府在公共自行車建設(shè)項目中共投入9600萬元,估計2014年共租車3200萬車次,每車次平均收入租車費0.1元,求2014年該市租車費收入占總投入的百分率(精確到0.1%).

【答案】
(1)解:根據(jù)條形統(tǒng)計圖得:出現(xiàn)次數(shù)最多的為8,即眾數(shù)為8(萬車次);

將數(shù)據(jù)按照從小到大順序排列為:7.5,8,8,8,9,9,10,中位數(shù)為8(萬車次);

平均數(shù)為(7.5+8+8+8+9+9+10)÷7=8.5(萬車次)


(2)解:根據(jù)題意得:30×8.5=255(萬車次),

則估計4月份(30天)共租車255萬車次


(3)解:根據(jù)題意得: = ≈3.3%,

則2014年租車費收入占總投入的百分率為3.3%


【解析】(1)找出租車量中車次最多的即為眾數(shù),將數(shù)據(jù)按照從小到大順序排列,找出中間的數(shù)即為中位數(shù),求出數(shù)據(jù)的平均數(shù)即可;(2)由(1)求出的平均數(shù)乘以30即可得到結(jié)果;(3)求出2014年的租車費,除以總投入即可得到結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車油箱的容積為70升,小王把油箱注滿油后準(zhǔn)備駕駛汽車從縣城到300千米外的省城接待客人,在接到客人后立即按原路返回,請回答下列問題:
(1)油箱注滿油后,汽車能夠行使的總路程y(單位:千米)與平均耗油量x(單位:升/千米)之間有怎樣的函數(shù)關(guān)系?
(2)如果小王以平均每千米耗油0.1升的速度駕駛汽車到達(dá)省城,在返程時由于下雨,小王降低了車速,此時每行駛1千米的耗油量增加了一倍,如果小王一直以此速度行駛,郵箱里的油是否夠回到縣城?如果不夠用,至少還需加多少油?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一組相同規(guī)格的飯碗,測得一只碗高度為4.5cm,兩只飯碗整齊疊放在桌面上的高度為6.5cm,三只飯碗整齊疊放在桌面上的高度為8.5cm.根據(jù)以上信息回答下列問題:

(1)若飯碗數(shù)為個,用含的代數(shù)式表示個飯碗整齊疊放在桌面上的高度;

(2)當(dāng)疊放飯碗數(shù)為9個時,求這疊飯碗的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點D是BA邊延長線上一點,過點D作DE∥BC,交CA延長線于點E,點F是DE延長線上一點,連接AF.
(1)如果 = ,DE=6,求邊BC的長;
(2)如果∠FAE=∠B,F(xiàn)A=6,F(xiàn)E=4,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算與解方程組
(1)( 2+|2 ﹣6|﹣
(2)解方程組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,用棋子擺成的字:

第一個 第二個 第三個

如果按照以上規(guī)律繼續(xù)擺下去,那么通過觀察,可以發(fā)現(xiàn):

(1)第四、第五個字分別需用      枚棋子.

(2)第n字需用   枚棋子.

(3)如果某一圖形共有102枚棋子,你知道它是第幾個字嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃投入一筆資金采購一批緊俏商品,經(jīng)過市場調(diào)查發(fā)現(xiàn),如果月初出售,可獲利15﹪,并可用本金和利潤再投資其他商品,到月末又可獲利10﹪;如果月末出售可獲利30﹪,但要付出倉儲費用700元.

(1)若商場投資元,分別用含的代數(shù)式表示月初出售和月末出售所獲得的利潤;

(2)若商場投資40000元,問選擇哪種銷售方式獲利較多?此時獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知點N(1,0),直線y=﹣x+2與兩坐標(biāo)軸分別交于A,B兩點,M,P分別是線段OB,AB上的動點,則PM+MN的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,以AC為直徑作⊙O交BC于點D,交AB于點G,且D是BC的中點,DE⊥AB,垂足為E,交AC的延長線于點F.
(1)求證:直線EF是⊙O的切線;
(2)CF=5,cos∠A= ,求AE的長.

查看答案和解析>>

同步練習(xí)冊答案