【題目】某廣告公司設(shè)計一幅周長為16米的矩形廣告牌,廣告設(shè)計費為每平方米2000元.設(shè)矩形一邊長為x,面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)設(shè)計費能達(dá)到24000元嗎?為什么?
(3)當(dāng)x是多少米時,設(shè)計費最多?最多是多少元?
【答案】(1)(0<x<8);(2)能;(3)當(dāng)x=4米時,矩形的最大面積為16平方米,設(shè)計費最多,最多是32000元.
【解析】
試題分析:(1)由矩形的一邊長為x、周長為16得出另一邊長為8﹣x,根據(jù)矩形的面積公式可得答案;
(2)由設(shè)計費為24000元得出矩形面積為12平方米,據(jù)此列出方程,解之求得x的值,從而得出答案;
(3)將函數(shù)解析式配方成頂點式,可得函數(shù)的最值情況.
試題解析:(1)∵矩形的一邊為x米,周長為16米,∴另一邊長為(8﹣x)米,∴S=x(8﹣x)=,其中0<x<8,即(0<x<8);
(2)能,∵設(shè)計費能達(dá)到24000元,∴當(dāng)設(shè)計費為24000元時,面積為24000÷200=12(平方米),即=12,解得:x=2或x=6,∴設(shè)計費能達(dá)到24000元.
(3)∵=,∴當(dāng)x=4時,S最大值=16,∴當(dāng)x=4米時,矩形的最大面積為16平方米,設(shè)計費最多,最多是32000元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了進(jìn)一步了解某校八年級學(xué)生的身體素質(zhì)情況,體育老師對該校八年級(1)班50位學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,以測試數(shù)據(jù)為樣本,繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖,圖表如下所示:
組別 | 次數(shù)x | 頻數(shù)(人數(shù)) |
第1組 | 80≤x<100 | 6 |
第2組 | 100≤x<120 | 8 |
第3組 | 120≤x<140 | a |
第4組 | 140≤x<160 | 18 |
第5組 | 160≤x<180 | 6 |
請結(jié)合圖表完成下列問題:
(1)求表中a的值;
(2)請把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若在一分鐘內(nèi)跳繩次數(shù)少于120次的為測試不合格,則該校八年級共1000人中,一分鐘跳繩
不合格的人數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是CD的中點,點F是BC上一點,且FC=2BF,連接AE,EF.若AB=2,AD=3,則cos∠AEF的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的函數(shù)解析式為y=﹣2x+4,且l1與x軸交于點D,直線l2經(jīng)過點A、B,直線l1、l2交于點C.
(1)求直線l2的函數(shù)解析式;
(2)求△ADC的面積;
(3)在直線l2上是否存在點P,使得△ADP面積是△ADC面積的2倍?如果存在,請求出P坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)(為常數(shù)).
(1)若點和點是該反比例函數(shù)圖象上的兩點,試?yán)梅幢壤瘮?shù)的性質(zhì)比較和的大;
(2)設(shè)點()是其圖象上的一點,過點作軸于點,若,(為坐標(biāo)原點),求的值,并直接寫出不等式的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com