【題目】如圖,正方形ABCD的邊長是,連接交于點O,并分別與邊交于點,連接AE,下列結(jié)論: ; ; ; 當(dāng)時, ,其中正確結(jié)論的個數(shù)是
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】∵四邊形ABCD是正方形,AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,AD=AB,∠DAP=∠ABQ,AP=BQ,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP,則①正確;
∵∠DOA=∠AOP=90,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴=,所以O(shè)A2=OD·OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OEOP;則②錯誤;
在△CQF與△BPE中,∠FCQ=∠EBP,∠Q=∠P,CQ=BP,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF與△DCE中,AD=CD,∠ADC=∠DCE,DF=CE,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四邊形OECF;則③正確;
∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴==,∴BE=,∴QE=,∵△QOE∽△PAD,∴===,∴QO=,OE=,∴AO=5-QO=,∴tan∠OAE==,則④錯誤,故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】成都市中心城區(qū)“小游園,微綠地”規(guī)劃已經(jīng)實施,武侯區(qū)某街道有一塊矩形空地進入規(guī)劃試點.如圖,已知該矩形空地長為,寬為,按照規(guī)劃將預(yù)留總面積為的四個小矩形區(qū)域(陰影部分)種植花草,并在花草周圍修建三條橫向通道和三條縱向通道,各通道的寬度相等.
(1)求各通道的寬度;
(2)現(xiàn)有一工程隊承接了對這的區(qū)域(陰影部分)進行種植花草的綠化任務(wù),該工程隊先按照原計劃進行施工,在完成了的綠化任務(wù)后,將工作效率提高,結(jié)果提前天完成任務(wù),求該工程隊原計劃每天完成多少平方米的綠化任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗學(xué)完統(tǒng)計知識后,隨機調(diào)查了她所在轄區(qū)若干名居民的年齡,并繪制成如下統(tǒng)計圖.
請根據(jù)統(tǒng)計圖提供的信息,解答下列問題
(1)小麗共調(diào)查了 名居民的年齡,扇形統(tǒng)計圖中a= %,b= %;
(2)補全條形統(tǒng)計圖;
(3)若該轄區(qū)0~14歲的居民約有3500人,請估計年齡在60歲以上的居民人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5)。
(1)求直線BC與拋物線的解析式;
(2)若點M是拋物線在x軸下方圖象上的動點,過點M作MN∥y軸交直線BC于點N,求MN的最大值;
(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰三角形ABC中,∠ABC=90°,D為AC邊上中點,過D點作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,則EF的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,兩直角邊AC=8cm,BC=6cm.
(1)作∠BAC的平分線AD交BC于點D;(尺規(guī)作圖,不寫作法,保留作圖痕跡)
(2)計算△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是
A. “明天降雨的概率是80%”表示明天有80%的時間都在降雨
B. “拋一枚硬幣正面朝上的概率為”表示每拋2次就有一次正面朝上
C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎
D. “拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在附近
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標(biāo)A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當(dāng)1<x<4時,有y2<y1 ,
其中正確的是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com