如圖,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5。點M,N分別在邊AD,BC上運動,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分別為E,F(xiàn)。
(1)求梯形ABCD的面積;
(2)求四邊形MEFN面積的最大值;
(3)試判斷四邊形MEFN能否為正方形,若能,求出正方形MEFN的面積;若不能,請說明理由.
解:(1)分別過D,C兩點作DG⊥AB于點G,CH⊥AB于點H,
∵AB∥CD,
∴DG=CH,DG∥CH,
∴四邊形DGHC為矩形,GH=CD=1,
∵DG=CH,AD=BC,∠AGD=∠BHC=90°,
∴△AGD≌△BHC(HL),
∴AG=BH==3,
∵在Rt△AGD中,AG=3,AD=5,
∴DG=4,
。
(2)∵MN∥AB,ME⊥AB,NF⊥AB,
∴ME=NF,ME∥NF,
∴四邊形MEFN為矩形,
∵AB∥CD,AD=BC,
∴∠A=∠B,
∵ME=NF,∠MEA=∠NFB=90°,
∴△MEA≌△NFB(AAS),
∴AE=BF,
設AE=x,則EF=7-2x,
∵∠A=∠A,∠MEA=∠DGA=90°,
∴△MEA∽△DGA,
,
∴ME=,
,
當x=時,ME=<4,
∴四邊形MEFN面積的最大值為。
(3)能。
由(2)可知,設AE=x,則EF=7-2x,ME=
若四邊形MEFN為正方形,則ME=EF,
,解得
,
∴四邊形MEFN能為正方形,其面積為。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習冊答案