已知:如圖,在平面直角坐標(biāo)系中,四邊形ABCO是菱形,且∠AOC=60°,點(diǎn)B的坐標(biāo)是(0,8
3
),點(diǎn)P從點(diǎn)C開始以每秒1個(gè)單位長(zhǎng)度的速度在線段CB上向點(diǎn)B移動(dòng),同時(shí),點(diǎn)Q從點(diǎn)O開始以每秒a(1≤a≤3)個(gè)單位長(zhǎng)度的精英家教網(wǎng)速度沿射線OA方向移動(dòng)設(shè)t(0<t≤8)秒后,直線PQ交OB于點(diǎn)D.
(1)求∠AOB的度數(shù)及線段OA的長(zhǎng);
(2)求經(jīng)過A,B,C三點(diǎn)的拋物線的解析式;
(3)當(dāng)a=3,OD=
4
3
3
時(shí),求t的值及此時(shí)直線PQ的解析式;
(4)當(dāng)a為何值時(shí),以O(shè),Q,D為頂點(diǎn)的三角形與△OAB相似?當(dāng)a為何值時(shí),以O(shè),Q,D為頂點(diǎn)的三角形與△OAB不相似?請(qǐng)給出你的結(jié)論,并加以證明.
分析:(1)已知了∠AOC的度數(shù),根據(jù)菱形的性質(zhì)即可得出∠AOB=30°,連接AC交BO于M,在直角三角形OAM中,OM=
1
2
OB,可根據(jù)OM的長(zhǎng)和∠AOM的度數(shù)即可求出OA的長(zhǎng).
(2)同(1)在直角三角形OAM中可求出AM和OM的長(zhǎng),即可得出A點(diǎn)的坐標(biāo).根據(jù)菱形的對(duì)稱性,可知A、C關(guān)于y軸對(duì)稱,由此可得出C點(diǎn)的坐標(biāo),可用待定系數(shù)法求出拋物線的解析式.
(3)當(dāng)a=3時(shí),OQ=3t,BP=t,已知了OD的長(zhǎng),可求出BD的長(zhǎng),然后根據(jù)相似三角形BPD和OQD得出的關(guān)于BM,OM,BP,OQ的比例關(guān)系式,可求出t的值.即可按(2)的方法求出Q的坐標(biāo),用待定系數(shù)法可得出直線DQ的解析式.
(4)本題要分情況討論:
①當(dāng)△ODQ∽△OBA時(shí),PQ∥AB,四邊形AQPB是平行四邊形,因此BP=AQ,可據(jù)此求出a的值.
②當(dāng)△ODQ∽△OAB時(shí),∠ODQ=∠OAB.分兩種情況:
一:當(dāng)P、B不重合時(shí);二:當(dāng)P、B重合時(shí).
方法一樣,和(3)類似,先根據(jù)相似三角形BPD和OQD求出OD的值,然后根據(jù)相似三角形OQD和OBA求出a的值.然后進(jìn)行判斷即可.
解答:精英家教網(wǎng)解:(1)因?yàn)樗倪呅蜛BCO是菱形,∠AOC=60°,
所以∠AOB=30°.
連接AC交OB于M,則OM=
1
2
OB,AM⊥OB
所以AM=tan30°×OM=4.
所以,OA=AM÷sin30°=8,

(2)由(1)可知A(4,4
3
),B(0,8
3
),C(-4,4
3

設(shè)經(jīng)過A、B、C三點(diǎn)的拋物線為y=ax2+c
所以16a+c=4
3
,c=8
3
,
∴a=-
3
4

所以經(jīng)過A、B、C三點(diǎn)的拋物線為y=-
3
4
x2+8
3


(3)當(dāng)a=3時(shí),CP=t,OQ=3t,OD=
4
3
3

所以PB=8-t,BD=8
3
-
4
3
3
=
20
3
3

由△OQD∽△BPD得
BP
OQ
=
BD
OD

8-t
3t
=
20
3
3
4
3
3
,
所以t=
1
2

當(dāng)t=
1
2
時(shí),OQ=
3
2

同理可求Q(
3
4
,
3
3
4

設(shè)直線PQ的解析式為y=kx+b,則
3
4
k+b=
3
3
4
,b=
4
3
3
;
所以k=-
7
3
9

所以直線PQ的解析式為y=-
7
3
9
x+
4
3
3


(4)當(dāng)a=1時(shí),△ODQ∽△OBA;
當(dāng)1<a<3時(shí),以O(shè)、Q、D為頂點(diǎn)的三角形與△OAB不能相似;
當(dāng)a=1時(shí),△ODQ∽△OBA.
理由如下:
①若△ODQ∽△OBA,可得∠ODQ=∠OBA,此時(shí)PQ∥AB.
故四邊形PCOQ為平行四邊形,
所以CP=OQ
即at=t(0<t≤8).
所以a=1時(shí),△ODQ∽△OBA
②若△ODQ∽△OAB
(I)如果P點(diǎn)不與B點(diǎn)重合,此時(shí)必有△PBD∽△QOD
所以
PB
OQ
=
BD
OD

所以
PB+OQ
OQ
=
OB
OD
,即
8-t+at
at
=
8
3
OD

所以O(shè)D=
8
3
at
8-t+at

因?yàn)椤鱋DQ∽△OAB,
所以
OD
OA
=
OQ
OB
8
3
at
8-t+at
8
=
at
8
3

∴a=1+
16
t

∵0<t≤8,
∴a>3,不符合題意.即a>3時(shí),以O(shè)、Q、D為頂點(diǎn)的三角形與△ABO不能相似;

(II)當(dāng)P與B重合時(shí),此時(shí)D點(diǎn)也與B點(diǎn)重合.
可知此時(shí)t=8.
由△ODQ∽△OAB得
OD
OA
=
OQ
OB

所以O(shè)B2=OA×OQ.
即(8
3
2=8×8a
所以a=3符合題意.
故當(dāng)a=3時(shí)△ODQ∽△OAB.
點(diǎn)評(píng):本題是點(diǎn)的運(yùn)動(dòng)性問題,考查了菱形的性質(zhì)、相似三角形的判定和性質(zhì)等知識(shí)點(diǎn),綜合性強(qiáng),難度較高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,直y=
3
2
x+b
與雙曲線y=
16
x
相交于第一象限內(nèi)的點(diǎn)A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對(duì)應(yīng)的一次函數(shù)的解析式以及它與x軸的交點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個(gè)圓柱形桶時(shí),乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶
8,9,10,11或12
8,9,10,11或12
個(gè)時(shí),乒乓球可以落入桶內(nèi)?(直接寫出滿足條件的一個(gè)答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線l2y=
13
x
相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點(diǎn)E,交直線l2于點(diǎn)D,平行于y軸的直x=a交直線l1于點(diǎn)M,交直線l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆重慶萬州區(qū)巖口復(fù)興學(xué)校九年級(jí)下第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點(diǎn)A坐標(biāo)為(3 ,4). 點(diǎn)P從原點(diǎn)O開始以2個(gè)單位/秒速度沿x軸正向運(yùn)動(dòng) ;同時(shí),一條平行于x軸的直線從AC開始以1個(gè)單位/秒速度豎直向下運(yùn)動(dòng) ,交OA于點(diǎn)D,交OC于點(diǎn)M,交BC于點(diǎn)E. 當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),直線也隨即停止運(yùn)動(dòng).

(1)求出點(diǎn)C的坐標(biāo);
(2)在這一運(yùn)動(dòng)過程中, 四邊形OPEM是什么四邊形?請(qǐng)說明理由。若
用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的
范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?
(3)在整個(gè)運(yùn)動(dòng)過程中,是否存在某個(gè)t值,使⊿MPB為等腰三角形?
若有,請(qǐng)求出所有滿足要求的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省湖州市中考數(shù)學(xué)模擬試卷(十一)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個(gè)圓柱形桶時(shí),乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶______個(gè)時(shí),乒乓球可以落入桶內(nèi)?(直接寫出滿足條件的一個(gè)答案)

查看答案和解析>>

同步練習(xí)冊(cè)答案