【題目】如圖,在△ABC中,∠A=90°,AB=AC,O是BC的中點,如果在AB和AC上分別有一個動點M、N在移動,且在移動時保持AN=BM,請你判斷△OMN的形狀,并說明理由.
【答案】△OMN是等腰直角三角形.理由見解析.
【解析】
試題分析:連接OA.先證得△OAN≌△OBM,然后根據(jù)全等三角形的對應(yīng)邊相等推知OM=ON;然后由等腰直角三角形ABC的性質(zhì)、等腰三角形OMN的性質(zhì)推知∠NOM=90°,即△OMN是等腰直角三角形.
試題解析:△OMN是等腰直角三角形.
理由:連接OA.
∵在△ABC中,∠A=90°,AB=AC,O是BC的中點,
∴AO=BO=CO(直角三角形斜邊上的中線是斜邊的一半);
∠B=∠C=45°;
在△OAN和OBM中,
∴△OAN≌△OBM(SAS),
∴ON=OM;
∴∠AON=∠BOM;
又∵∠BOM+∠AOM=90°,
∴∠NOM=∠AON+∠AOM=90°,
∴△OMN是等腰直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)準備新建50個停車位,用以解決小區(qū)停車難的問題.已知新建1個地上停車位和1個地下停車位共需0.6萬元;新建3個地上停車位和2個地下停車位共需1.3萬元.
(1)該小區(qū)新建1個地上停車位和1個地下停車位各需多少萬元?
(2)該小區(qū)的物業(yè)部門預(yù)計投資金額超過12萬元而不超過13萬元,那么共有幾種建造停車位的方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,P是BC中點,∠EPF=90°,給出四個結(jié)論:①∠B=∠BAP;②AE=CF;③PE=PF;④S四邊形AEPF=S△ABC.其中成立的有_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,△ABC的兩條高AD、BE相交于點H,且AD=BD,試說明下列結(jié)論成立的理由。(1)∠DBH=∠DAC;(2)△BDH≌△ADC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知AB∥CD,點E、F分別是AB、CD上的點,點P是兩平行線之間的一點,設(shè)∠AEP=α,∠PFC=β,在圖①中,過點E作射線EH交CD于點N,作射線FI,延長PF到G,使得PE、FG分別平分∠AEH、∠DFl,得到圖②.
(1)在圖①中,過點P作PM∥AB,當α=20°,β=50°時,∠EPM= 度,∠EPF= 度;
(2)在(1)的條件下,求圖②中∠END與∠CFI的度數(shù);
(3)在圖②中,當FI∥EH時,請直接寫出α與β的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為點E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=4,AD=3 , AF=2 , 求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角板的直角頂點O在直線AB上,OC,OD是三角板的兩條直角邊,OE平分∠AOD.
(1)若∠COE=20°,則∠BOD= ;若∠COE=α,則∠BOD= (用含α的代數(shù)式表示)
(2)當三角板繞O逆時針旋轉(zhuǎn)到圖2的位置時,其它條件不變,試猜測∠COE與∠BOD之間有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+6與y軸交于點A,與x軸交于點B,點M是射線AB上一動點(點M不與點A、B重合),以點M為圓心,MA長為半徑的圓交y軸于另一點C,直線MC與x軸交于點D,點E是線段BD的中點,射線ME交⊙M于點F,連接OF.
(1)若MA=2,求C點的坐標;
(2)若D點的坐標為(4,0),求MC的長;
(3)當OF=MA時,直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC.
(1)試用直尺和圓規(guī)在AC上找一點D,使AD=BD(不寫作法,但需保留作圖痕跡).
(2)在(1)中,連接BD,若BD=BC,求∠A的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com