【題目】如圖,已知:∠A=∠F,∠C=∠D,求證:BD∥EC,下面是不完整的說明過程,請將過程及其依據(jù)補(bǔ)充完整.
證明:∵∠A=∠F(已知)
∴AC∥ ,
∴∠D=∠1
又∵∠C=∠D(已知)
∴∠1=
∴BD∥CE
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正六邊形ABCDEF的中心,下列圖形中可由△OBC平移得到的是( )
A.△OCD
B.△OAB
C.△OAF
D.△DEF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下兩小題后作出相應(yīng)的解答:
(1)“同位角相等,兩直線平行”,“兩直線平行,同位角相等”,這兩個命題的題設(shè)和結(jié)論在命題中的位置恰好對凋,我們把其中一命題叫做另一個命題的逆命題,請你寫出命題“角平分線上的點(diǎn)到角兩邊的距離相等“的逆命題,并指出逆命題的題設(shè)和結(jié)論;
(2)根據(jù)以下語句作出圖形,并寫出該命題的文字?jǐn)⑹?/span>.已知:過直線AB上一點(diǎn)O任作射線OC , OM、ON分別平分∠AOC、∠BOC , 則OM⊥ON .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面去括號正確的是( 。
A. x2﹣(2y2﹣x+z)=x2﹣2y2﹣x+z
B. 2a+(﹣6x+4y﹣2)=2a﹣6x+4y﹣2
C. 3a﹣[6a﹣(4a﹣1)]=3a﹣6a﹣4a+1
D. ﹣(2x2﹣y)+(z+1)=﹣2x2﹣y﹣z﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面內(nèi),有兩個角∠AOB=60°,∠AOC=30°,OA為兩角的公共邊,則∠BOC為( 。
A. 30° B. 90° C. 30°或90° D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(0,3),且當(dāng)x=1時,y有最小值2.
(1)求a,b,c的值;
(2)設(shè)二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)
①若二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)的圖象與x軸的兩個交點(diǎn)的橫坐標(biāo)x1,x2滿足,求k的值;
②請?jiān)诙魏瘮?shù)y=ax2+bx+c與y=k(2x+2)﹣(ax2+bx+c)的圖象上各找一個點(diǎn)M、N,且不論k為何值,這兩個點(diǎn)始終關(guān)于x軸對稱,求出點(diǎn)M、N的坐標(biāo)(點(diǎn)M在點(diǎn)N的上方).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于A,B兩點(diǎn),且交y軸于點(diǎn)C.已知點(diǎn)A(1,4),點(diǎn)B在第三象限,且點(diǎn)B的橫坐標(biāo)為t(t<﹣1).
(1)求反比例函數(shù)的解析式;
(2)用含t的式子表示k,b;
(3)若△AOB的面積為3,求點(diǎn)B的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com