在三邊互不相等的三角形中,最長(zhǎng)邊的長(zhǎng)為a,最長(zhǎng)的中線的長(zhǎng)為m,最長(zhǎng)的高線的長(zhǎng)為h,則


  1. A.
    a>m>h
  2. B.
    a>h>m
  3. C.
    m>a>h
  4. D.
    h>m>a
A
分析:在三邊互不相等的三角形中,根據(jù)勾股定理,最長(zhǎng)的邊是最長(zhǎng)的,最長(zhǎng)的中線比最長(zhǎng)的高線長(zhǎng).
解答:解:在△ABC中,AC為最長(zhǎng)的邊,AE為最長(zhǎng)的中線,AD為最長(zhǎng)的高,則AC2=AD2+DC2;AE2=AD2+DE2;因?yàn)镈C大于DE,所以AC>AE>AD,所以在三邊各不相等的三角形中最長(zhǎng)的邊大于最長(zhǎng)的中線大于最長(zhǎng)的高.
此題答案a>m>h.
故選A.
點(diǎn)評(píng):考查在三角形中勾股定理的運(yùn)用,根據(jù)題意畫(huà)出三角形,高為頂點(diǎn)到對(duì)應(yīng)邊的最短線段,而且中線在三角形內(nèi),所以最長(zhǎng)的為邊,最短的為高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南昌)某數(shù)學(xué)活動(dòng)小組在作三角形的拓展圖形,研究其性質(zhì)時(shí),經(jīng)歷了如下過(guò)程:
(1)操作發(fā)現(xiàn):在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖1所示,其中DF⊥AB于點(diǎn)F,EG⊥AC于點(diǎn)G,M是BC的中點(diǎn),連接MD和ME,則下列結(jié)論正確的是
①②③④
①②③④
(填序號(hào)即可)
①AF=AG=
12
AB;②MD=ME;③整個(gè)圖形是軸對(duì)稱圖形;④MD⊥ME.
(2)數(shù)學(xué)思考:在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖2所示,M是BC的中點(diǎn),連接MD和ME,則MD和ME具有怎樣的數(shù)量關(guān)系?請(qǐng)給出證明過(guò)程;
(3)類(lèi)比探究:
(i)在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作等腰直角三角形,如圖3所示,M是BC的中點(diǎn),連接MD和ME,試判斷△MED的形狀.答:
等腰直角三角形
等腰直角三角形

(ii)在三邊互不相等的△ABC中(見(jiàn)備用圖),仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作(非等腰)直角三角形ABD和(非等腰)直角三角形ACE,M是BC的中點(diǎn),連接MD和ME,要使(2)中的結(jié)論此時(shí)仍然成立,你認(rèn)為需增加一個(gè)什么樣的條件?(限用題中字母表示)并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在三邊互不相等的三角形中,最長(zhǎng)邊的長(zhǎng)為a,最長(zhǎng)的中線的長(zhǎng)為m,最長(zhǎng)的高線的長(zhǎng)為h,則( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年江西省南昌市高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044

某數(shù)學(xué)活動(dòng)小組在作三角形的拓展圖形,研究其性質(zhì)時(shí),經(jīng)歷了如下過(guò)程:

(1)操作發(fā)現(xiàn):

在等腰△ABC,AB=AC,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖1所示,其中DF⊥AB于點(diǎn)F,EG⊥AC于點(diǎn)G,M是BC的中點(diǎn),連接MD和ME,則下列結(jié)論正確的是________(填序號(hào)即可)

①AF=AG=AB;②MD=ME;③整個(gè)圖形是軸對(duì)稱圖形;④MD⊥ME

(2)數(shù)學(xué)思考:

在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖2所示,M是BC的中點(diǎn),連接MD和ME,則MD與ME具有怎樣的數(shù)量關(guān)系?請(qǐng)給出證明過(guò)程;

(3)類(lèi)比探究:

(i)在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作等腰直角三角形,如圖3所示,M是BC的中點(diǎn),連接MD和ME,試判斷△MEC的形狀.答:________

(ii)在三邊互不相等的△ABC中,仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作(非等腰)直角三角形ABD和(非等腰)直角三角形ACE,M是BC的中點(diǎn),連接MD和ME,要使(2)中的結(jié)論時(shí)仍然成立,你認(rèn)為需增加一個(gè)什么樣的條件?(限制用題中字母表示)并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年江西省南昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

某數(shù)學(xué)活動(dòng)小組在作三角形的拓展圖形,研究其性質(zhì)時(shí),經(jīng)歷了如下過(guò)程:
(1)操作發(fā)現(xiàn):在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖1所示,其中DF⊥AB于點(diǎn)F,EG⊥AC于點(diǎn)G,M是BC的中點(diǎn),連接MD和ME,則下列結(jié)論正確的是______(填序號(hào)即可)
①AF=AG=AB;②MD=ME;③整個(gè)圖形是軸對(duì)稱圖形;④MD⊥ME.
(2)數(shù)學(xué)思考:在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖2所示,M是BC的中點(diǎn),連接MD和ME,則MD和ME具有怎樣的數(shù)量關(guān)系?請(qǐng)給出證明過(guò)程;
(3)類(lèi)比探究:
(i)在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作等腰直角三角形,如圖3所示,M是BC的中點(diǎn),連接MD和ME,試判斷△MED的形狀.答:______.
(ii)在三邊互不相等的△ABC中(見(jiàn)備用圖),仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作(非等腰)直角三角形ABD和(非等腰)直角三角形ACE,M是BC的中點(diǎn),連接MD和ME,要使(2)中的結(jié)論此時(shí)仍然成立,你認(rèn)為需增加一個(gè)什么樣的條件?(限用題中字母表示)并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案