(2013•陜西)一天晚上,黎明和張龍利用燈光下的影子長來測量一路燈D的高度.如圖,當李明走到點A處時,張龍測得李明直立時身高AM與影子長AE正好相等;接著李明沿AC方向繼續(xù)向前走,走到點B處時,李明直立時身高BN的影子恰好是線段AB,并測得AB=1.25m,已知李明直立時的身高為1.75m,求路燈的高CD的長.(結果精確到0.1m).
分析:根據(jù)AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,從而得到△ABN∽△ACD,利用相似三角形對應邊的比相等列出比例式求解即可.
解答:解:設CD長為x米,
∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA
∴MA∥CD∥BN
∴EC=CD=x
∴△ABN∽△ACD,
BN
CD
=
AB
AC

1.75
x
=
1.25
x-1.75

解得:x=6.125≈6.1.
∴路燈高CD約為6.1米.
點評:本題考查了相似三角形的應用,解題的關鍵是根據(jù)已知條件得到平行線,從而證得相似三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•陜西)如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E、F分別是AC、BC的中點,直線EF與⊙O交于G、H兩點.若⊙O的半徑為7,則GE+FH的最大值為
10.5
10.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•陜西)我省教育廳下發(fā)了《在全省中小學幼兒園廣泛開展節(jié)約教育的通知》,通知中要求各學校全面持續(xù)開展“光盤行動”.某市教育局督導組為了調(diào)查學生對“節(jié)約教育”內(nèi)容的了解程度(程度分為:“A--了解很多”、“B--了解較多”,“C--了解較少”,“D--不了解”),對本市一所中學的學生進行了抽樣調(diào)查.我們將這次調(diào)查的結果繪制了以下兩幅統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:
(1)本次抽樣調(diào)查了多少名學生?
(2)補全兩幅統(tǒng)計圖;
(3)若該中學共有1800名學生,請你估計這所中學的所有學生中,對“節(jié)約教育”內(nèi)容“了解較多”的有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•陜西)甲、乙兩人用手指玩游戲,規(guī)則如下:①每次游戲時,兩人同時隨機地各伸出一根手指;②兩人伸出的手指中,大拇指只勝食指、食指只勝中指、中指只勝無名指、無名指只勝小拇指、小拇指只勝大拇指,否則不分勝負.依據(jù)上述規(guī)則,當甲、乙兩人同時隨機地各伸出一根手指時,
(1)求甲伸出小拇指取勝的概率;
(2)求乙取勝的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•陜西)問題探究:
(1)請在圖①中作出兩條直線,使它們將圓面四等分;
(2)如圖②,M是正方形ABCD內(nèi)一定點,請在圖②中作出兩條直線(要求其中一條直線必須過點M)使它們將正方形ABCD的面積四等分,并說明理由.
問題解決:
(3)如圖③,在四邊形ABCD中,AB∥CD,AB+CD=BC,點P是AD的中點,如果AB=a,CD=b,且b>a,那么在邊BC上是否存在一點Q,使PQ所在直線將四邊形ABCD的面積分成相等的兩部分?如若存在,求出BQ的長;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案