【題目】如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
⑴ 如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD, 點(diǎn)M、N分別在AD、CD上,若∠MBN=∠ABC ,試探究線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請寫出猜想,并給予證明.
⑵ 如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長線上,若∠MBN=∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關(guān)系?請直接寫出猜想,不需證明.
【答案】(1)MN=AM+CN,證明見解析(2)MN=CN-AM
【解析】
(1)先判定梯形ABCD是等腰梯形,根據(jù)等腰梯形的性質(zhì)可得∠A+∠BCD=180°,再把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,點(diǎn)A與點(diǎn)C重合,點(diǎn)M到達(dá)點(diǎn)M′,根據(jù)旋轉(zhuǎn)變換的性質(zhì),△ABM和△CBM′全等,根據(jù)全等三角形對應(yīng)邊相等可得AM=CM′,BM=BM′,根據(jù)全等三角形對應(yīng)角相等可得∠A=∠BCM′,∠ABM=∠M′BC,然后證明M′、C、N三點(diǎn)共線,再利用“邊角邊”證明△BMN和△BM′N全等,然后根據(jù)全等三角形對應(yīng)邊相等即可得證;
(2)在∠CBN內(nèi)部作∠CBM′=∠ABM交CN于點(diǎn)M′,然后證明∠C=∠BAM,再利用“角邊角”證明△ABM和△CBM′全等,根據(jù)全等三角形對應(yīng)邊相等可得AM=CM′,BM=BM′,再證明∠MBN=∠M′BN,利用“邊角邊”證明△MBN和△M′BN全等,根據(jù)全等三角形對應(yīng)邊相等可得MN=M′N,從而得到MN=CN-AM.
(1)MN=AM+CN.
理由如下:
如圖,∵BC∥AD,AB=BC=CD,
∴梯形ABCD是等腰梯形,
∴∠A+∠BCD=180°,
把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則△ABM≌△CBM′,
∴AM=CM′,BM=BM′,∠A=∠BCM′,∠ABM=∠M′BC,
∴∠BCM′+∠BCD=180°,
∴點(diǎn)M′、C、N三點(diǎn)共線,
∵∠MBN=∠ABC,
∴∠M′BN=∠M′BC+∠CBN=∠ABM+∠CBN=∠ABC-∠MBN=∠ABC,
∴∠MBN=∠M′BN,
在△BMN和△BM′N中,
∵,
∴△BMN≌△BM′N(SAS),
∴MN=M′N,
又∵M′N=CM′+CN=AM+CN,
∴MN=AM+CN;
(2)MN=CN-AM.
理由如下:如圖,作∠CBM′=∠ABM交CN于點(diǎn)M′,
∵∠ABC+∠ADC=180°,
∴∠BAD+∠C=360°-180°=180°,
又∵∠BAD+∠BAM=180°,
∴∠C=∠BAM,
在△ABM和△CBM′中,
,
∴△ABM≌△CBM′(ASA),
∴AM=CM′,BM=BM′,
∵∠MBN=∠ABC,
∴∠M′BN=∠ABC-(∠ABN+∠CBM′)=∠ABC-(∠ABN+∠ABM)=∠ABC-∠MBN=∠ABC,
∴∠MBN=∠M′BN,
在△MBN和△M′BN中,
∵,
∴△MBN≌△M′BN(SAS),
∴MN=M′N,
∵M′N=CN-CM′=CN-AM,
∴MN=CN-AM.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)邊長分別為和的正方形如圖放置(圖1),其未疊合部分(陰影)面積為;若再在圖1中大正方形的右下角擺放一個(gè)邊長為的小正方形(如圖2),兩個(gè)小正方形疊合部分(陰影)面積為.
(1)用含、的代數(shù)式分別表示、;
(2)若,,求的值;
(3)當(dāng)時(shí),求出圖3中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,矩形ABCD的一條邊AB=10,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處,折痕為AO.
(1)求證:△OCP∽△PDA;
(2)若△OCP與△PDA的面積比為1:4,求邊AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示.將△ABC向右平移6個(gè)單位長度,再向下平移4個(gè)單位長度得到△A1B1C1.(圖中每個(gè)小方格邊長均為1個(gè)單位長度).
(1)在圖中畫出平移后的△A1B1C1.
(2)直接寫出△A1B1C1.各頂點(diǎn)的坐標(biāo):A1____;B1____;C1____.
(3)求出△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,點(diǎn)在直線上(,除外),的垂線與的垂線交于點(diǎn),研究和的數(shù)量關(guān)系.
(1)在探究,的關(guān)系時(shí),運(yùn)用“從特殊到一般”的數(shù)學(xué)思想,發(fā)現(xiàn)當(dāng)點(diǎn)是的中點(diǎn)時(shí),只需要取邊的中點(diǎn)(如圖),通過推理證明就可以得到的數(shù)量關(guān)系,請你按照這種思路直接寫出和的數(shù)量關(guān)系:_____________________
(2)當(dāng)點(diǎn)是線段上(,除外)任意一點(diǎn)(其它條件不變),上面得到的結(jié)論是否仍然成立呢?證明你的結(jié)論;
(3)點(diǎn)在線段的延長線上,上面得到的結(jié)論是否仍然成立呢?在下圖中畫出圖形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用因式分解法解下列方程:
(1)(4x﹣1)(5x+7)=0.
(2)3x(x﹣1)=2﹣2x.
(3)(2x+3)2=4(2x+3).
(4)2(x﹣3)2=x2﹣9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=kx+6與拋物線y=ax2+bx+c相交于A,B兩點(diǎn),且點(diǎn)A(1,4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上.
(1)求拋物線的解析式;
(2)在(1)中拋物線的第三象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克30元,規(guī)定每千克售價(jià)不低于成本,且不高于70元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 40 | 50 | 60 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達(dá)式(利潤=收入成本);
(3)試說明(2)中總利潤W隨售價(jià)x的變化而變化的情況,并指出售價(jià)為多少元時(shí)獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD 和正方形ECGF,其中E、H分別為AD、BC中點(diǎn),連結(jié)AF、HG、AH.
(1)求證:;
(2)求證:;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com