【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC且DE=AC,連接AE交OD于點F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.
【答案】(1)證明見解析;(2).
【解析】分析:(1)由菱形ABCD中,DE∥AC且DE=AC,易證得四邊形OCED是平行四邊形,繼而可得OE=CD即可;
(2)由菱形的對角線互相垂直,可證得四邊形OCED是矩形,根據菱形的性質得出AC=AB,再根據勾股定理得出AE的長度即可.
本題解析:
(1)證明:四邊形ABCD是菱形,
∴OA=OC=AC,AD=CD,
∵DE∥AC且DE=AC,
∴DE=OA=OC,
∴四邊形OADE、四邊形OCED都是平行四邊形,
(2)解:∵AC⊥BD,
∴OE=AD,
∴OE=CD;
∴四邊形OCED是矩形,
∵在菱形ABCD中,∠ABC=60°,
∴AC=AB=2,
∴在矩形OCED中,CE=OD=.
∴在Rt△ACE中,AE=.
科目:初中數學 來源: 題型:
【題目】已知:拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論: ①4ac<b2;②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;
③a﹣b+c>0;④當y>0時,x的取值范圍是﹣1≤x<3;
⑤當x<0時,y隨x增大而增大
其中正確的結論有( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置測角儀AB,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米,求拉線CE的長(結果精確到0.1米,參考數據: ≈1.414, ≈1.732).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,點P從點A出發(fā),以每秒2cm的速度沿線段AB向點B方向運動,點Q從點D出發(fā),以每秒3cm的速度沿線段DC向點C運動,已知動點P、Q同時出發(fā),點P到達B點或點Q到達C點時,P、Q運動停止,設運動時間為t (秒).
(1)求CD的長;
(2)當四邊形PBQD為平行四邊形時,求t的值;
(3)在點P、點Q的運動過程中,是否存在某一時刻,使得PQ⊥AB?若存在,請求出t的值并說明理由;若不存在,請說明理
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=kx+b的圖象經過A(﹣2,﹣1),B(1,3)兩點,并且交x軸于點C,交y軸于點D.
(1)求一次函數的解析式;
(2)求點C和點D的坐標;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,甲、乙兩動點分別從正方形ABCD的頂點A.C同時沿正方形的邊開始移動,甲點依順時針方向環(huán)行,乙點依逆時針方向環(huán)行.若甲的速度是乙的速度的3倍,則它們第2015次相遇在邊________上.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列方程解應用題:五蓮縣新瑪特購物中心第一次用5000元購進甲、乙兩種商品,其中乙商品的件數比甲商品件數的倍多15件,甲、乙兩種商品的進價和售價如下表(注:獲利=售價﹣進價)
甲 | 乙 | |
進價(元/件) | 20 | 30 |
售價(元/件) | 29 | 40 |
(1)新瑪特購物中心將第一次購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
(2)該購物中心第二次以第一次的進價又購進甲、乙兩種商品,其中甲種商品的件數不變,乙種商品的件數是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤比第一次獲得的總利潤多160元,求第二次乙種商品是按原價打幾折銷售?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠AOB內部有三條射線,其中OE平分角∠BOC,OF平分∠AOC.
(1)如圖1,若∠AOB=120°,∠AOC=30°,求∠EOF的度數?
(2)如圖2,若∠AOB=α,求∠EOF的度數,(用含α的式子表示)
(3)若將題中的“平分”的條件改為“∠EOB=∠COB,∠COF=∠COA,且∠AOB=α,求∠EOF的度數.(用含α的式子表示)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com