【題目】如圖,AD與BC相交于點(diǎn)F,F(xiàn)A=FC,∠A=∠C,點(diǎn)E在BD的垂直平分線上.
(1)如圖1,求證:∠FBE=∠FDE;
(2)如圖2,連接CE分別交BD、AD于點(diǎn)H、G,當(dāng)∠FBD=∠DBE=∠ABF,CD=DE時(shí),直接寫(xiě)出所有與△ABF全等的三角形.
【答案】(1)證明見(jiàn)解析;(2)△DFC、△BEH、△CHD、△EDG.
【解析】試題分析:
(1)由題意易證△ABF≌△CDF,由此可得:BF=DF,從而可得∠FBD=∠FDB;由點(diǎn)E在BD的垂直平分線上可得BE=DE,由此可得∠EBD=∠EDB,這樣即可得到∠FBE=∠FDE;
(2)由(1)中結(jié)論結(jié)合∠FBD=∠DBE=∠ABF,CD=DE易證△BFD≌△BED,由此可證得AB=CD=DE=BE=BF=DF,設(shè)∠ABF=2x,則可得∠A=∠BFA=90°-x,∠FBD=∠FDB=2x由此可得∠AFB=4x,這樣在△ABF中由三角形內(nèi)角和定理可得:2x+90-x+4x=180,由此可得x=18°,這樣即可證得△ABF,△DCF,△BEH,△DEG和△CDH都是頂角為36°的等腰三角形,結(jié)合AB=CD=DE=BE即可得到這5個(gè)三角形全等,即與△ABF全等的三角形有4個(gè).
試題解析:
(1)∵在△ABF和△CDF中,∠A=∠C,AF=CF,∠AFB=∠CFD,
∴△ABF≌△CDF,
∴BF=DF,
∴∠FBD=∠FDB,
∵由點(diǎn)E在BD的垂直平分線上,
∴BE=DE,
∴∠EBD=∠EDB,
∴∠FBD+∠EBD=∠FDB+∠EDB,即∠FBE=∠FDE;
(2)由(1)可知∠ABF=∠CDF,∠FBE=∠FDE,AB=CD,
∵∠FBD=∠DBE=∠ABF,CD=DE
∴∠ABF=∠FBD=∠EBD=∠CDF=∠FDB=∠BDE,AB=CD=DE=BE,
∴△BFD≌△BED,
∴BF=BE,
∴AB=BF=BE=DE=CD=DF,
∴若設(shè)∠ABF=2x,則可得∠A=∠AFB=90°-x,∠FBD=∠FDB=2x,
∵∠AFB=∠FBD+∠FDB=4x,
∴4x=90-x,解得x=18°,
由此可得∠ABF=2x=36°,∠A=∠AFB=72°,即△ABF是頂角為36°的等腰三角形,
結(jié)合∠ABF=∠FBD=∠EBD=∠CDF=∠FDB=∠BDE,AB=BF=BE=DE=CD=DF計(jì)算可得△DCF,△BEH,△DEG和△CDH都是頂角為36°的等腰三角形,且它們和△ABF有一腰是相等的,
∴△ABF,△DCF,△BEH,△DEG和△CDH是相互全等的,即與△ABF全等的三角形有4個(gè),分別是△DCF,△BEH,△DEG和△CDH.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,CD⊥AB,垂足為點(diǎn)D,已知AC=3,BC=4.
(1)線段AD,CD,CD,BD是不是成比例線段?寫(xiě)出你的理由;
(2)在這個(gè)圖形中,能否再找出其他成比例的四條線段?如果能,請(qǐng)至少寫(xiě)出兩組.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游樂(lè)場(chǎng)一轉(zhuǎn)角滑梯如圖所示,滑梯立柱AB、CD均垂直于地面,點(diǎn)E在線段BD上,在C點(diǎn)測(cè)得點(diǎn)A的仰角為30°,點(diǎn)E的俯角也為30°,測(cè)得B、E間距離為10米,立柱AB高30米.求立柱CD的高(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,AB=6,BC=8.點(diǎn)P在矩形ABCD的內(nèi)部,點(diǎn)E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長(zhǎng)為數(shù)___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,點(diǎn)D在BC上運(yùn)動(dòng)(不能到達(dá)點(diǎn)B,C),過(guò)點(diǎn)D作∠ADE=45°,DE交AC于點(diǎn)E.
(1)求證:△ABD∽△DCE;
(2)當(dāng)△ADE是等腰三角形時(shí),求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B在x的負(fù)半軸上,△AOB的面積為8,作△AOB關(guān)于y軸的對(duì)稱圖形,點(diǎn)B的對(duì)應(yīng)點(diǎn)為C.
(1)求線段OC的長(zhǎng);
(2)點(diǎn)D從A點(diǎn)出發(fā),沿線段AO向終點(diǎn)O運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)C出發(fā),沿x軸的正方向運(yùn)動(dòng),且CE=AD,連接DE交AC于點(diǎn)G,判斷DG和EG的數(shù)量關(guān)系,并說(shuō)明理由.
(3)在(2)的條件下,當(dāng)∠CEG=∠ABD時(shí),求點(diǎn)G點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知 AD//BC, 點(diǎn) E 為 CD 上一點(diǎn),AE、BE 分別平分∠DAB、∠CBA,BE交 AD 的延長(zhǎng)線于點(diǎn) F.求證:(1)△ABE≌△AEF;(2) AD+BC=AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),且與x軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(2,1).
(1)求m及k的值;
(2)求點(diǎn)C的坐標(biāo),并結(jié)合圖象寫(xiě)出不等式組0<x+m≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0) 交x軸正半軸于點(diǎn)A,直線y=2x 經(jīng)過(guò)拋物線的頂點(diǎn)M.已知該拋物線的對(duì)稱軸為直線x=2,交x軸于點(diǎn)B.
(1)求a,b的值;
(2)P是第一象限內(nèi)拋物線上的一點(diǎn),且在對(duì)稱軸的右側(cè),連接OP,BP.設(shè)點(diǎn)P的橫坐標(biāo)為m ,△OBP的面積為S,.求K關(guān)于m 的函數(shù)表達(dá)式及K的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com