如圖,某農(nóng)戶為了發(fā)展養(yǎng)殖業(yè),準(zhǔn)備利用一段墻(墻長18米)和55米長的竹籬笆圍成三個相連且面積相等的長方形雞、鴨、鵝各一個.問:
( 1)如果雞、鴨、鵝場總面積為150m2,那么有幾種圍法?
(2)如果需要圍成的養(yǎng)殖場的面積盡可能大,那么又應(yīng)怎樣圍,最大面積是多少?

【答案】分析:(1)設(shè)出竹籬笆圍成長方形的寬為x米,則長為(55-4x)米,利用長方形的面積解答即可;
(2)設(shè)出養(yǎng)殖場的面積為S,考慮墻長18米,即可解決問題.
解答:解:(1)設(shè)竹籬笆圍成長方形的寬為x米,則長為(55-4x)米,根據(jù)題意列方程得,
x(55-4x)=150,
解得x1=10,x2=
當(dāng)x=10時,55-4x=15<18,符合題意;
當(dāng)x=時,55-4x=40>18,不符合題意;
∴垂直于墻的竹籬笆長10米,平行于墻的竹籬笆長15米;
答:只有1種圍法;

(2)設(shè)養(yǎng)殖場的面積為S,充分利用墻的長18米時,圍的面積最大,
根據(jù)題意得出:S=x(55-4x)=-4x2+55x,
當(dāng)x==時最大,但此時籬笆長55-4x=大于墻的長18米,
利用二次函數(shù)增減性得出,當(dāng)墻的長x取最大值米時,S最大,
即S=18×()=166.5米2
答:垂直于墻的竹籬笆長9.25米,平行于墻的竹籬笆長18米,最大面積166.5米2
點評:此題主要利用長方形的面積解答有關(guān)一元二次方程的實際應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,某農(nóng)戶為了發(fā)展養(yǎng)殖業(yè),準(zhǔn)備利用一段墻(墻長18米)和55米長的竹籬笆圍成三個相連且面積相等的長方形雞、鴨、鵝各一個.問:
( 1)如果雞、鴨、鵝場總面積為150m2,那么有幾種圍法?
(2)如果需要圍成的養(yǎng)殖場的面積盡可能大,那么又應(yīng)怎樣圍,最大面積是多少?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,某農(nóng)戶為了發(fā)展養(yǎng)殖業(yè),準(zhǔn)備利用一段墻(墻長18米)和55米長的竹籬笆圍成三個相連且面積相等的長方形雞、鴨、鵝各一個.問:
( 1)如果雞、鴨、鵝場總面積為150m2,那么有幾種圍法?
(2)如果需要圍成的養(yǎng)殖場的面積盡可能大,那么又應(yīng)怎樣圍,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

如圖,某農(nóng)戶為了發(fā)展養(yǎng)殖業(yè),準(zhǔn)備利用一段墻(墻長18米)和55米長的竹籬笆圍成三個相連且面積相等的長方形雞、鴨、鵝各一個。
(1)如果雞、鴨、鵝場總面積為150米2,那么有幾種圍法?
(2)如果需要圍成的養(yǎng)殖場的面積盡可能大,那么又應(yīng)怎樣圍,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:《22.3 實際問題與一元二次方程》2010年同步練習(xí)1(解析版) 題型:解答題

如圖,某農(nóng)戶為了發(fā)展養(yǎng)殖業(yè),準(zhǔn)備利用一段墻(墻長18米)和55米長的竹籬笆圍成三個相連且面積相等的長方形雞、鴨、鵝各一個.問:
( 1)如果雞、鴨、鵝場總面積為150m2,那么有幾種圍法?
(2)如果需要圍成的養(yǎng)殖場的面積盡可能大,那么又應(yīng)怎樣圍,最大面積是多少?

查看答案和解析>>

同步練習(xí)冊答案