如圖,四邊形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.

(1)求證:AC∥DE;
(2)過點B作BF⊥AC于點F,連結(jié)EF,試判斷四邊形BCEF的形狀,并說明理由.

(1)證明略
(2)理由略解析:
⑴在矩形ABCD中,AC∥DE,∴∠DCA=∠CAB,∵∠EDC=∠CAB,
∴∠DCA=∠EDC,∴AC∥DE;
⑵四邊形BCEF是平行四邊形.
理由:由∠DEC=90°,BF⊥AC,可得∠AFB=∠DEC=90°,
又∠EDC=∠CAB,AB=CD,
∴△DEC≌△AFB,∴DE=AF,由⑴得AC∥DE,
∴四邊形AFED是平行四邊形,∴AD∥EF且AD=EF,
∵在矩形ABCD中,AD∥BC且AD=BC,
∴EF∥BC且EF=BC,
∴四邊形BCEF是平行四邊形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案