(2013•鐵嶺)如圖所示,某工程隊準備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為37°,塔底B的仰角為26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,圖中的點O、B、C、A、P在同一平面內(nèi),求山坡的坡度.(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)
分析:過點P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形,先解Rt△PBD,得出BD=PD•tan26.6°;解Rt△CPD,得出CD=PD•tan37°;再根據(jù)CD-BD=BC,列出方程,求出PD=320,進而求出PE=60,AE=120,然后在△APE中利用三角函數(shù)的定義即可求解.
解答:解:如圖,過點P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形.
在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,
∴BD=PD•tan∠BPD=PD•tan26.6°;
在Rt△CPD中,∵∠CDP=90°,∠CPD=37°,
∴CD=PD•tan∠CPD=PD•tan37°;
∵CD-BD=BC,
∴PD•tan37°-PD•tan26.6°=80,
∴0.75PD-0.50PD=80,
解得PD=320,
∴BD=PD•tan26.6°≈320×0.50=160,
∵OB=220,
∴PE=OD=OB-BD=60,
∵OE=PD=320,
∴AE=OE-OA=320-200=120,
∴tanα=
PE
AE
=
60
120
=0.5,
∴坡度為1:2.
點評:本題考查了解直角三角形的應用-仰角俯角問題、坡度坡角問題,難度適中,通過作輔助線,構(gòu)造直角三角形,利用三角函數(shù)求解是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•鐵嶺)如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點O為AB的中點,連接DO并延長到點E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當△ABC滿足什么條件時,矩形AEBD是正方形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鐵嶺)如圖,在△ABC和△DEC中,已知AB=DE,還需添加兩個條件才能使△ABC≌△DEC,不能添加的一組條件是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鐵嶺)如圖,在數(shù)軸上表示不等式組
1-x>0
x+1≥0
的解集,其中正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鐵嶺)如圖是4塊小立方塊所搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置小方塊的個數(shù),其主視圖是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鐵嶺)如圖,點P是正比例函數(shù)y=x與反比例函數(shù)y=
kx
在第一象限內(nèi)的交點,PA⊥OP交x軸于點A,△POA的面積為2,則k的值是
2
2

查看答案和解析>>

同步練習冊答案