如圖1,在矩形MNPQ中,動(dòng)點(diǎn)R從點(diǎn)N出發(fā),沿N→P→Q→M方向運(yùn)動(dòng)至點(diǎn)M處停止.設(shè)點(diǎn)R運(yùn)動(dòng)的路程為x,△MNR的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則矩形MNPQ的面積是(  )
精英家教網(wǎng)
A.10B.16C.20D.36
∵x=4時(shí),及R從N到達(dá)點(diǎn)P時(shí),面積開始不變,
∴PN=4,
同理可得QP=5,
∴矩形的面積為4×5=20.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

將矩形紙片ABCD分別沿兩條不同的直線剪兩刀,使剪得的三塊紙片恰能拼成一個(gè)三角形(不能有重疊和縫隙).圖1中提供了一種剪拼成等腰三角形的示意圖.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)
(1)請?zhí)峁┝硪环N剪拼成等腰三角形方式,并在圖2中畫出示意圖;
(2)以點(diǎn)B為原點(diǎn),BC所在的直線為x軸建立平面直角坐標(biāo)系(如圖3),點(diǎn)D的坐標(biāo)(8,5).若剪拼后得到等腰三角形MNP,使M,N點(diǎn)在y軸上(M在點(diǎn)N上方),點(diǎn)P在邊CD上(不與C,D重合).設(shè)直線PM的解析式為y=kx+b(k≠0),則k的值為
 
,b的取值范圍是
 
(不要求解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊△ABC的邊長為2,動(dòng)點(diǎn)P,Q在線段BC上移動(dòng)(都不與B,C重合),點(diǎn)P在Q的左精英家教網(wǎng)邊,PQ=1,過點(diǎn)P作PM⊥CB,交AC于M,過點(diǎn)Q作QN⊥CB,交AB于N,連接MN.記CP的長為t.
(1)當(dāng)t為何值時(shí),四邊形MPQN是矩形?
(2)設(shè)四邊形MPQN的面積為S,請說明當(dāng)P,Q移動(dòng)時(shí),S是否為定值?若是,求出這個(gè)定值;若不是,請求出S關(guān)于t的函數(shù)關(guān)系式;
(3)當(dāng)t取何值時(shí),以點(diǎn)C,P,M為頂點(diǎn)的三角形與以A,M,N為頂點(diǎn)的三角形相似.判斷此時(shí)△MNP的形狀,并請說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠A=90°,AB=4,AC=3,點(diǎn)M是AB上的動(dòng)點(diǎn)(不與A,B重合),過點(diǎn)M作MN∥BC交AC精英家教網(wǎng)于點(diǎn)N.以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMPN,令A(yù)M=x.
(1)用含x的代數(shù)式表示△MNP的面積S;
(2)當(dāng)x為何值時(shí),⊙O與直線BC相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在邊長為2的等邊三角形△ABC中,點(diǎn)P以每秒1個(gè)單位從C向B運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,且PQ=1,過P、Q點(diǎn)分別向BC作垂線,垂足分別為P、Q,交AC、AB于M、N,連接MN;
(1)當(dāng)t為何值時(shí),四邊形MPQN是矩形?
(2)不管點(diǎn)P如何移動(dòng),四邊形MPQN的面積是否改變,說明理由;
(3)當(dāng)t為何值時(shí),△CMP與△AMN相似?這時(shí)△MNP是什么類型的三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:鼎尖助學(xué)系列—同步練習(xí)(數(shù)學(xué) 八年級下冊)、函數(shù)及其圖象 相似三角形的應(yīng)用 題型:044

如圖①、②,Rt△ABC≌Rt△A′B′C′,∠C=∠C′=90°,AC=6,BC=8,分別在兩個(gè)三角形中畫如圖所示的正方形DEFG和正方形C′MNP.

(1)

通過計(jì)算比較一下,哪個(gè)正方形邊長大?

(2)

如圖③,若在與圖①同樣大小的直角三角形中畫矩形,使矩形的長是寬的2倍,求該矩形的寬.

查看答案和解析>>

同步練習(xí)冊答案