在△ABC中,AB=AC=1,BC=x,∠A=36°.則的值為(   ).
A.B.C.1D.
D

試題分析:由題意可得△ABC為黃金三角形,根據(jù)黃金比即可得到x的值,再代入求值即可.
∵AB=AC=1,∠A=36°
∴△ABC為黃金三角形


故選D.
點(diǎn)評(píng):解題的關(guān)鍵是熟記頂角為36°的等腰三角形是黃金三角形,黃金比為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,四邊形ABCD是正方形,BD是對(duì)角線,BE平分∠DBC交DC于E點(diǎn),交DF于M,F(xiàn)是BC延長(zhǎng)線上一點(diǎn),且CE=CF.
(1)求證:BM⊥DF;
(2)若正方形ABCD的邊長(zhǎng)為2,求ME•MB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形的邊長(zhǎng)為12,其內(nèi)部有一個(gè)小正方形,其中、分別在、上.若,求小正方形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如下圖,△ABC在方格紙中.
(1)請(qǐng)?jiān)诜礁窦埳辖⑵矫嬷苯亲鴺?biāo)系,使A(3,3)、C(6,2),并求出B點(diǎn)坐標(biāo);
(2)以原點(diǎn)O為位似中心,相似比為2,在第一象限內(nèi)將△ABC放大,
畫出放大后的圖形△A′B′C′;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△ABC中,點(diǎn)D、E分別是AB、AC的中點(diǎn),則下列結(jié)論:①BC=2DE;②△ADE∽△ABC;③.④三角形ADE與梯形DECB的面積比為1:4,其中正確的有【    】

(A)3個(gè)          (B)2個(gè)       (C)1個(gè)          (D)0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知∠ACB=∠CBD=90°,AC=8,CB=2,要使圖中的兩個(gè)直角三角形相似,則BD的長(zhǎng)應(yīng)為(    ).
A.B.8C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖, 在Rt△ABC中,∠C=90º, AC=9,BC=12,動(dòng)點(diǎn)P從點(diǎn)A開始沿邊AC向點(diǎn)C以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿邊CB向點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連接PQ. 點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).

(1)直接用含t的代數(shù)式分別表示:QB=__________, PD=___________;
(2)是否存在t的值,使四邊形PDBQ為平行四邊形?若存在,求出t的值;若不存在,說(shuō)明理由;
(3)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說(shuō)明理由.并探究如何改變點(diǎn)Q的速度(勻速運(yùn)動(dòng)),使四邊形PDBQ在某一時(shí)刻成為菱形,求點(diǎn)Q的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知△ABC中,∠C=90°,AC=BC,AB=6,O是BC邊上的中點(diǎn),N是AB邊上的點(diǎn)(不與端點(diǎn)重合),M是OB邊上的點(diǎn),且MN∥AO,延長(zhǎng)CA與直線MN相交于點(diǎn)D,G點(diǎn)是AB延長(zhǎng)線上的點(diǎn),且BG=AN,連接MG,設(shè)AN=x,BM=y.
(1)求y關(guān)于x的函數(shù)關(guān)系式及其定義域;
(2)連接CN,當(dāng)以DN為半徑的⊙D和以MG為半徑的⊙M外切時(shí),求∠ACN的正切值;
(3)當(dāng)△ADN與△MBG相似時(shí),求AN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,EF是△ABC的中位線,將△AEF沿中線AD方向平移到△A1E1F1的位置,使E1F1與BC邊重合,已知△AEF的面積為7,則圖中陰影部分的面積為( 。
A.7B.14C.21D.28

查看答案和解析>>

同步練習(xí)冊(cè)答案