精英家教網 > 初中數學 > 題目詳情
如圖,在?ABCD中,DE⊥AB,垂足為E,DE=AE=EB=a,則?ABCD的周長為( )

A.
B.4a
C.(4+2)a
D.(4+)a
【答案】分析:根據已知易求得AB長,再根據勾股定理可得到AD長.那么?ABCD的周長應等于2×(AD+AB).
解答:解:∵DE⊥AB,
∴∠AED=90°,
∵AE=DE=a,
∴AD==a,
∵四邊形ABCD是平行四邊形,
∴CD=AB=AE+EB=2a,AD=BC,
∴?ABCD的周長=2(AD+AB)=4a+2=(4+2)a,
故選C.
點評:本題考查了平行四邊形的性質和周長公式的運用,解決本題的關鍵是利用勾股定理求得平行四邊形一條邊的長,需注意平行四邊形的周長等于兩鄰邊之和的2倍.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在?ABCD中,對角線AC、BD相交于點O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•長春一模)感知:如圖①,在菱形ABCD中,AB=BD,點E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點E、F分別在BA、AD的延長線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點O是AD邊的垂直平分線與BD的交點,點E、F分別在OA、AD的延長線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•犍為縣模擬)甲題:已知關于x的一元二次方程x2=2(1-m)x-m2的兩實數根為x1,x2
(1)求m的取值范圍;
(2)設y=x1+x2,當y取得最小值時,求相應m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點E,BF⊥CD于點F,AC與BE、BF分別交于點G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點O,連接CE,則△CBE的周長是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習冊答案