【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別是線段AD及其延長(zhǎng)線上,且DE=DF,給出下列條件:①BE⊥EC;②BF∥EC;③AB=AC,從中選擇一個(gè)條件使四邊形BECF是菱形,并給出證明,你選擇的條件是___(只填寫序號(hào)).
【答案】解:∵BD=CD,DE=DF,
∴四邊形BECF是平行四邊形,
①BE⊥EC時(shí),四邊形BECF是矩形,不一定是菱形;
②四邊形BECF是平行四邊形,則BF∥EC一定成立,故不一定是菱形;
③AB=AC時(shí),∵D是BC的中點(diǎn),
∴AF是BC的中垂線,
∴BE=CE,
∴平行四邊形BECF是菱形.
故答案是:③.
【解析】根據(jù)點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別是線段AD及其延長(zhǎng)線上,且DE=DF,即可證明四邊形BECF是平行四邊形,然后根據(jù)菱形的判定定理即可作出判斷.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解菱形的判定方法的相關(guān)知識(shí),掌握任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為參加學(xué)校的“我愛古詩詞”知識(shí)競(jìng)賽,小王所在班級(jí)組織了一次古詩詞知識(shí)測(cè)試,并將全班同學(xué)的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),以下是根據(jù)這次測(cè)試成績(jī)制作的不完整的頻率分布表和頻率分布直方圖.
組別 | 分組 | 頻數(shù) | 頻率 |
1 | 50≤x<60 | 9 | 0.18 |
2 | 60≤x<70 | a | |
3 | 70≤x<80 | 20 | 0.40 |
4 | 80≤x<90 | 0.08 | |
5 | 90≤x≤100 | 2 | b |
合計(jì) |
請(qǐng)根據(jù)以上頻率分布表和頻率分布直方圖,回答下列問題:
(1)求出a、b、x、y的值;
(2)若要從小明、小敏等五位成績(jī)優(yōu)秀的同學(xué)中隨機(jī)選取兩位參加競(jìng)賽,請(qǐng)用“列表法”或“樹狀圖”求出小明、小敏同時(shí)被選中的概率.(注:五位同學(xué)請(qǐng)用A、B、C、D、E表示,其中小明為A,小敏為B)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1為平地上一幢建筑物與鐵塔圖,圖2為其示意圖.建筑物AB與鐵塔CD都垂直于地面,BD=30m,在A點(diǎn)測(cè)得D點(diǎn)的俯角為45°,測(cè)得C點(diǎn)的仰角為60°.求鐵塔CD的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列一元二次方程中,有兩個(gè)相等實(shí)數(shù)根的是( 。
A.﹣8=0
B.2﹣4x+3=0
C.9+6x+1=0
D.5x+2=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,試探究AD、DE、EB滿足的等量關(guān)系.
[探究發(fā)現(xiàn)]
小聰同學(xué)利用圖形變換,將△CAD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△CBH,連接EH,由已知條件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.
根據(jù)“邊角邊”,可證△CEH≌ , 得EH=ED.
在Rt△HBE中,由定理,可得BH2+EB2=EH2 , 由BH=AD,可得AD、DE、EB之間的等量關(guān)系是 。
[實(shí)踐運(yùn)用]
(1)如圖(2),在正方形ABCD中,△AEF的頂點(diǎn)E、F分別在BC、CD邊上,高AG與正方形的邊長(zhǎng)相等,求∠EAF的度數(shù);
(2)在(1)條件下,連接BD,分別交AE、AF于點(diǎn)M、N,若BE=2,DF=3,BM=2,運(yùn)用小聰同學(xué)探究的結(jié)論,求正方形的邊長(zhǎng)及MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為開拓學(xué)生視野,開展“課外讀書周”活動(dòng),活動(dòng)后期隨機(jī)調(diào)查了九年級(jí)部分學(xué)生一周的課外閱讀時(shí)間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖的信息回答下列問題:
(1)本次調(diào)查的學(xué)生總數(shù)為____人,被調(diào)查學(xué)生的課外閱讀時(shí)間的中位數(shù)是___小時(shí),眾數(shù)是___小時(shí);
(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,課外閱讀時(shí)間為5小時(shí)的扇形的圓心角度數(shù)是;
(4)若全校九年級(jí)共有學(xué)生700人,估計(jì)九年級(jí)一周課外閱讀時(shí)間為6小時(shí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a>0)過(﹣2,0),(2,3)兩點(diǎn),那么拋物線的對(duì)稱軸( 。
A.只能是x=﹣1
B.可能是y軸
C.可能在y軸右側(cè)且在直線x=2的左側(cè)
D.可能在y軸左側(cè)且在直線x=﹣2的右側(cè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源.某市對(duì)居民用水實(shí)行階梯水價(jià),居民家庭每月用水量劃分為三個(gè)階梯,一、二、三級(jí)階梯用水的單價(jià)之比等于1:1.5:2.如圖折線表示實(shí)行階梯水價(jià)后每月水費(fèi)y(元)與用水量xm3之間的函數(shù)關(guān)系.其中線段AB表示第二級(jí)階梯時(shí)y與x之間的函數(shù)關(guān)系。
(1)寫出點(diǎn)B的實(shí)際意義
(2)求線段AB所在直線的表達(dá)式
(3)某戶5月份按照階梯水價(jià)應(yīng)繳水費(fèi)102元,其相應(yīng)用水量為多少立方米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com